Skip to content

Pinecone MCP tool for ADK

Supported in ADKPythonTypeScript

The Pinecone MCP Server connects your ADK agent to Pinecone, a vector database for AI applications. This integration gives your agent the ability to manage indexes, store and search data using semantic search with metadata filtering, and search across multiple indexes with reranking.

Use cases

  • Semantic Search and Retrieval: Search stored data using natural language queries with metadata filtering and reranking.

  • Knowledge Base Management: Store and manage data to build and maintain retrieval-augmented generation (RAG) systems.

  • Cross-Index Search: Search across multiple Pinecone indexes simultaneously, with automatic deduplication and reranking of results.

Prerequisites

Use with agent

from google.adk.agents import Agent
from google.adk.tools.mcp_tool import McpToolset
from google.adk.tools.mcp_tool.mcp_session_manager import StdioConnectionParams
from mcp import StdioServerParameters

PINECONE_API_KEY = "YOUR_PINECONE_API_KEY"

root_agent = Agent(
    model="gemini-2.5-pro",
    name="pinecone_agent",
    instruction="Help users manage and search their Pinecone vector indexes",
    tools=[
        McpToolset(
            connection_params=StdioConnectionParams(
                server_params=StdioServerParameters(
                    command="npx",
                    args=[
                        "-y",
                        "@pinecone-database/mcp",
                    ],
                    env={
                        "PINECONE_API_KEY": PINECONE_API_KEY,
                    }
                ),
                timeout=30,
            ),
        )
    ],
)
import { LlmAgent, MCPToolset } from "@google/adk";

const PINECONE_API_KEY = "YOUR_PINECONE_API_KEY";

const rootAgent = new LlmAgent({
    model: "gemini-2.5-pro",
    name: "pinecone_agent",
    instruction: "Help users manage and search their Pinecone vector indexes",
    tools: [
        new MCPToolset({
            type: "StdioConnectionParams",
            serverParams: {
                command: "npx",
                args: ["-y", "@pinecone-database/mcp"],
                env: {
                    PINECONE_API_KEY: PINECONE_API_KEY,
                },
            },
        }),
    ],
});

export { rootAgent };

Note

Only indexes with integrated inference are supported. Indexes without an integrated embedding model are not supported by this MCP server.

Available tools

Documentation

Tool Description
search-docs Search the official Pinecone documentation

Index management

Tool Description
list-indexes List all Pinecone indexes
describe-index Describe the configuration of an index
describe-index-stats Get statistics about an index, including record count and available namespaces
create-index-for-model Create a new index with an integrated inference model for embedding

Data operations

Tool Description
upsert-records Insert or update records in an index with integrated inference
search-records Search for records using a text query with options for metadata filtering and reranking
cascading-search Search across multiple indexes, deduplicating and reranking the results
rerank-documents Rerank a collection of records or text documents using a specialized reranking model

Additional resources