Skip to content

Qdrant

The Qdrant MCP Server connects your ADK agent to Qdrant, an open-source vector search engine. This integration gives your agent the ability to store and retrieve information using semantic search.

Use cases

  • Semantic Memory for Agents: Store conversation context, facts, or learned information that agents can retrieve later using natural language queries.

  • Code Repository Search: Build a searchable index of code snippets, documentation, and implementation patterns that can be queried semantically.

  • Knowledge Base Retrieval: Create a retrieval-augmented generation (RAG) system by storing documents and retrieving relevant context for responses.

Prerequisites

  • A running Qdrant instance. You can:
    • Use Qdrant Cloud (managed service)
    • Run locally with Docker: docker run -p 6333:6333 qdrant/qdrant
  • (Optional) A Qdrant API key for authentication

Use with agent

from google.adk.agents import Agent
from google.adk.tools.mcp_tool import McpToolset
from google.adk.tools.mcp_tool.mcp_session_manager import StdioConnectionParams
from mcp import StdioServerParameters

QDRANT_URL = "http://localhost:6333"  # Or your Qdrant Cloud URL
COLLECTION_NAME = "my_collection"
# QDRANT_API_KEY = "YOUR_QDRANT_API_KEY"

root_agent = Agent(
    model="gemini-2.5-pro",
    name="qdrant_agent",
    instruction="Help users store and retrieve information using semantic search",
    tools=[
        McpToolset(
            connection_params=StdioConnectionParams(
                server_params=StdioServerParameters(
                    command="uvx",
                    args=["mcp-server-qdrant"],
                    env={
                        "QDRANT_URL": QDRANT_URL,
                        "COLLECTION_NAME": COLLECTION_NAME,
                        # "QDRANT_API_KEY": QDRANT_API_KEY,
                    }
                ),
                timeout=30,
            ),
        )
    ],
)

Available tools

Tool Description
qdrant-store Store information in Qdrant with optional metadata
qdrant-find Search for relevant information using natural language queries

Configuration

The Qdrant MCP server can be configured using environment variables:

Variable Description Default
QDRANT_URL URL of the Qdrant server None (required)
QDRANT_API_KEY API key for Qdrant Cloud authentication None
COLLECTION_NAME Name of the collection to use None
QDRANT_LOCAL_PATH Path for local persistent storage (alternative to URL) None
EMBEDDING_MODEL Embedding model to use sentence-transformers/all-MiniLM-L6-v2
EMBEDDING_PROVIDER Provider for embeddings (fastembed or ollama) fastembed
TOOL_STORE_DESCRIPTION Custom description for the store tool Default description
TOOL_FIND_DESCRIPTION Custom description for the find tool Default description

Custom tool descriptions

You can customize the tool descriptions to guide the agent's behavior:

env={
    "QDRANT_URL": "http://localhost:6333",
    "COLLECTION_NAME": "code-snippets",
    "TOOL_STORE_DESCRIPTION": "Store code snippets with descriptions. The 'information' parameter should contain a description of what the code does, while the actual code should be in 'metadata.code'.",
    "TOOL_FIND_DESCRIPTION": "Search for relevant code snippets using natural language. Describe the functionality you're looking for.",
}

Additional resources