BayesianNeuralFieldMAP¤
Bases: BayesianNeuralFieldEstimator
Fits models using stochastic ensembles of maximum-a-posteriori estimates.
Implementation of BayesianNeuralFieldEstimator.
Source code in bayesnf/spatiotemporal.py
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
fit
¤
fit(table, seed, ensemble_size=16, learning_rate=0.005, num_epochs=5000, batch_size=None, num_splits=1)
Run inference using stochastic MAP ensembles.
PARAMETER | DESCRIPTION |
---|---|
table |
See documentation of
TYPE:
|
seed |
The jax random key.
TYPE:
|
ensemble_size |
Number of particles in the ensemble. It currently
an error if
TYPE:
|
learning_rate |
Learning rate for SGD.
TYPE:
|
num_epochs |
Number of full epochs through the training data.
TYPE:
|
batch_size |
Batch size for SGD. Default is
TYPE:
|
num_splits |
Number of splits over the data to run training. Defaults to 1, meaning there are no splits.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
BayesianNeuralFieldEstimator
|
Instance of |
Source code in bayesnf/spatiotemporal.py
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|