Exercise: Protobuf Parsing

In this exercise, you will build a parser for the protobuf binary encoding. Don’t worry, it’s simpler than it seems! This illustrates a common parsing pattern, passing slices of data. The underlying data itself is never copied.

Fully parsing a protobuf message requires knowing the types of the fields, indexed by their field numbers. That is typically provided in a proto file. In this exercise, we’ll encode that information into match statements in functions that get called for each field.

We’ll use the following proto:

message PhoneNumber {
  optional string number = 1;
  optional string type = 2;

message Person {
  optional string name = 1;
  optional int32 id = 2;
  repeated PhoneNumber phones = 3;

A proto message is encoded as a series of fields, one after the next. Each is implemented as a “tag” followed by the value. The tag contains a field number (e.g., 2 for the id field of a Person message) and a wire type defining how the payload should be determined from the byte stream.

Integers, including the tag, are represented with a variable-length encoding called VARINT. Luckily, parse_varint is defined for you below. The given code also defines callbacks to handle Person and PhoneNumber fields, and to parse a message into a series of calls to those callbacks.

What remains for you is to implement the parse_field function and the ProtoMessage trait for Person and PhoneNumber.

use std::convert::TryFrom;
use thiserror::Error;

#[derive(Debug, Error)]
enum Error {
    #[error("Invalid varint")]
    #[error("Invalid wire-type")]
    #[error("Unexpected EOF")]
    #[error("Invalid length")]
    InvalidSize(#[from] std::num::TryFromIntError),
    #[error("Unexpected wire-type)")]
    #[error("Invalid string (not UTF-8)")]

/// A wire type as seen on the wire.
enum WireType {
    /// The Varint WireType indicates the value is a single VARINT.
    //I64,  -- not needed for this exercise
    /// The Len WireType indicates that the value is a length represented as a
    /// VARINT followed by exactly that number of bytes.
    /// The I32 WireType indicates that the value is precisely 4 bytes in
    /// little-endian order containing a 32-bit signed integer.

/// A field's value, typed based on the wire type.
enum FieldValue<'a> {
    //I64(i64),  -- not needed for this exercise
    Len(&'a [u8]),

/// A field, containing the field number and its value.
struct Field<'a> {
    field_num: u64,
    value: FieldValue<'a>,

trait ProtoMessage<'a>: Default + 'a {
    fn add_field(&mut self, field: Field<'a>) -> Result<(), Error>;

impl TryFrom<u64> for WireType {
    type Error = Error;

    fn try_from(value: u64) -> Result<WireType, Error> {
        Ok(match value {
            0 => WireType::Varint,
            //1 => WireType::I64,  -- not needed for this exercise
            2 => WireType::Len,
            5 => WireType::I32,
            _ => return Err(Error::InvalidWireType),

impl<'a> FieldValue<'a> {
    fn as_string(&self) -> Result<&'a str, Error> {
        let FieldValue::Len(data) = self else {
            return Err(Error::UnexpectedWireType);
        std::str::from_utf8(data).map_err(|_| Error::InvalidString)

    fn as_bytes(&self) -> Result<&'a [u8], Error> {
        let FieldValue::Len(data) = self else {
            return Err(Error::UnexpectedWireType);

    fn as_u64(&self) -> Result<u64, Error> {
        let FieldValue::Varint(value) = self else {
            return Err(Error::UnexpectedWireType);

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> Result<(u64, &[u8]), Error> {
    for i in 0..7 {
        let Some(b) = data.get(i) else {
            return Err(Error::InvalidVarint);
        if b & 0x80 == 0 {
            // This is the last byte of the VARINT, so convert it to
            // a u64 and return it.
            let mut value = 0u64;
            for b in data[..=i].iter().rev() {
                value = (value << 7) | (b & 0x7f) as u64;
            return Ok((value, &data[i + 1..]));

    // More than 7 bytes is invalid.

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> Result<(u64, WireType), Error> {
    let field_num = tag >> 3;
    let wire_type = WireType::try_from(tag & 0x7)?;
    Ok((field_num, wire_type))

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> Result<(Field, &[u8]), Error> {
    let (tag, remainder) = parse_varint(data)?;
    let (field_num, wire_type) = unpack_tag(tag)?;
    let (fieldvalue, remainder) = match wire_type {
        _ => todo!("Based on the wire type, build a Field, consuming as many bytes as necessary.")
    todo!("Return the field, and any un-consumed bytes.")

/// Parse a message in the given data, calling `T::add_field` for each field in
/// the message.
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> Result<T, Error> {
    let mut result = T::default();
    while !data.is_empty() {
        let parsed = parse_field(data)?;
        data = parsed.1;

#[derive(Debug, Default)]
struct PhoneNumber<'a> {
    number: &'a str,
    type_: &'a str,

#[derive(Debug, Default)]
struct Person<'a> {
    name: &'a str,
    id: u64,
    phone: Vec<PhoneNumber<'a>>,

// TODO: Implement ProtoMessage for Person and PhoneNumber.

fn main() {
    let person: Person = parse_message(&[
        0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a,
        0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35,
        0x2d, 0x31, 0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a,
        0x18, 0x0a, 0x0e, 0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37,
        0x2d, 0x35, 0x33, 0x30, 0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c,
    println!("{:#?}", person);