

Module 1 | Lesson 7

Digital Buildings Ontology (DBO)

Before you get started

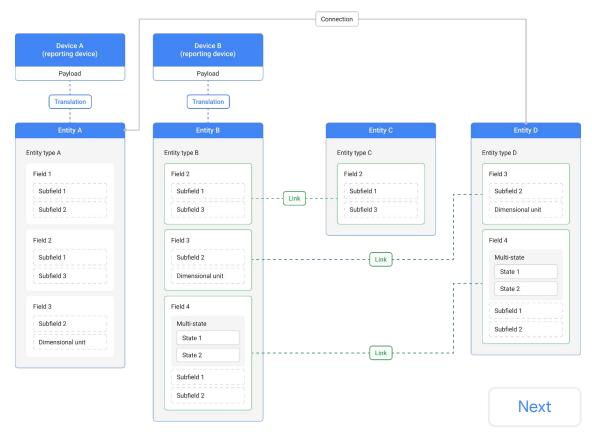
This learning module has interactive features and activities that enable a self-guided learning experience. To help you get started, here are two tips for viewing and navigating through the content.

- 1 View this content outside of GitHub.
 - For the best learning experience, you're encouraged to download a copy so links and other interactive features will be enabled.
 - To download a copy of this lesson, click **Download** in the top-right corner of this content block.
 - After downloading, open the file in your preferred PDF reader application.

- 2 Navigate by clicking the buttons and links.
 - For the best learning experience, using your keyboard or mouse wheel to navigate is discouraged. However, this is your only option if you're viewing from GitHub.
 - If you're viewing this content outside of GitHub:
 - Click the Back or Next buttons to go backward or forward in the deck. Moving forward, you'll find them in the bottom corners of every slide.
 - Click blue text to go to another slide in this deck or open a new page in your browser.

Ready to get started?

Let's go!


Conceptual model revisited

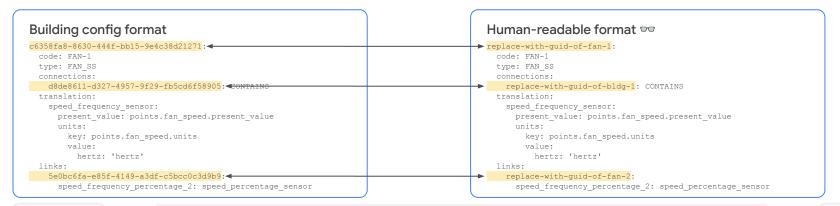
Here's another look at the DBO conceptual model from Lesson 2.

In this lesson, you'll explore one modeling concept from the abstract model. Remember, the following modeling concepts are used to describe the relationships that can occur between entities:

- Mappings
 - Translations
 - Links
- Connections

Do you see these concepts in the diagram?

Entities and their GUIDs


We identify entities using a globally unique identifier (GUID) to group their data and link or connect them to other entities.

Mappings are encoded using the **building config format**. The example below shows mappings in the new building config format and **highlights** the GUIDs of the entity, its connection, and its link. GUIDs can be created in advance using any GUID generator (like <u>UUID</u>).

If working with the old building config format, the Digital Building Project's <u>GUID Generator</u> can convert it into the new format shown below and add the GUIDs.

Examples in this lesson use a **human-readable** version of the new format and reference an entity by its "code." The example below shows the same connection and **highlights** the differences. We'd reference this entity by its code **vav-32**.

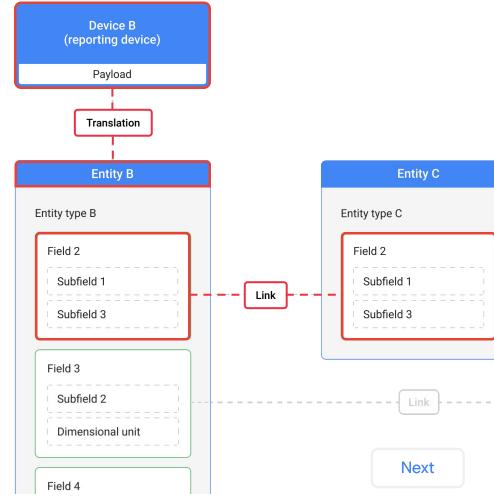
This format is only meant to support readability in this lesson, so it shouldn't be used in your actual work. Outside of this lesson, always use the correct building config format with an actual GUID.

Back

Note: For the remainder of this lesson, the examples marked with glasses of are using the human-readable format of the building config. We'll also refer to entities by their code to further support readability. Outside of this lesson, always use the correct building config format with an actual GUID in your work!

Lesson 7.1

Mappings


What you'll learn about:

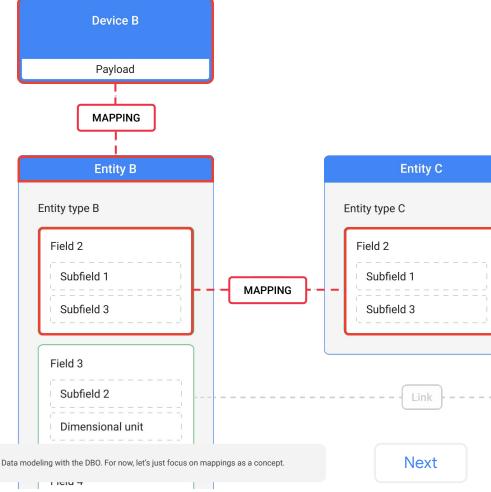
- Mappings
- Logical entities

By the end of this section, you'll be able to:

- Describe the purpose of mapping.
- Recognize different types of mappings.
- Describe what is a logical entity.

What's a mapping?

A mapping shows how a payload should be interpreted by associating the equipment installed in a building with the modeling concepts in the DBO.


Logical entities

A logical entity (also known as a canonical entity) is any device, system, or entity that maps one-to-one with a canonical entity type in the DBO.

You'll always focus on logical entities when mapping devices or systems to the DBO. Simply put, logical entities are the things we care to model, such as fans or meters.

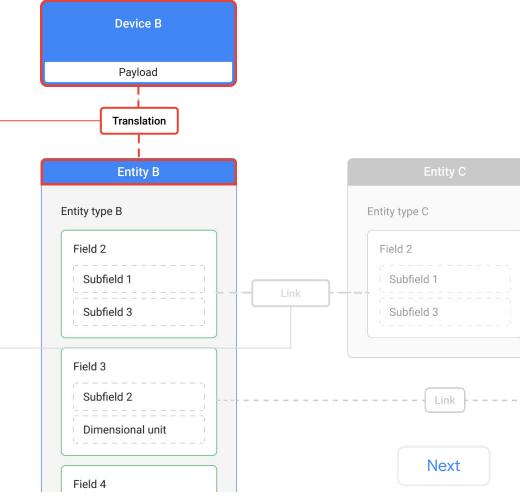
Mappings can be applied in different ways depending on what we care to model.

- Mappings can associate or translate the data from a device's payload to an entity (i.e., a concrete modeling concept) and the fields of its entity type (i.e., an abstract modeling concept).
- Mappings can also be used to pass or link data from one entity and the fields of its entity type to another.

Back

Note: You'll learn more about the application of mappings in Module 2: Data modeling with the DBO. For now, let's just focus on mappings as a concept.

Types of mappings


There are two types of mappings in the DBO that are used to associate building equipment to abstract and canonical concepts.

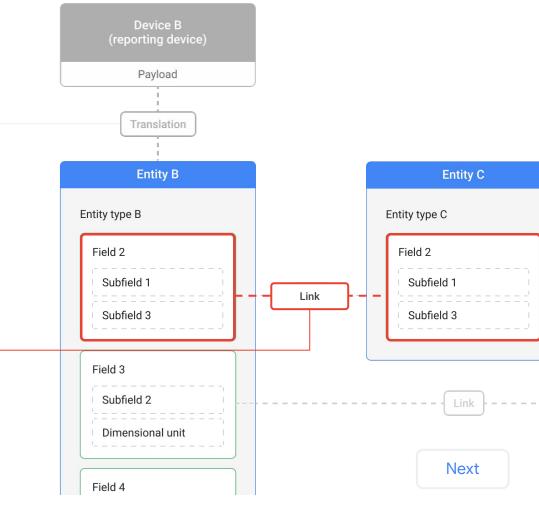
Translations -

A translation is a mapping between a device in the real world and its corresponding concrete and abstract concepts in the DBO. Translations convert the information contained in the device's native data payload into the DBO format.

Links ...

A link is a mapping between the standard fields of two entities to pass data between them. Links are used in conjunction with translations whenever a device's native payload can't be mapped one-to-one with a single abstract concept in the DBO.

Types of mappings


There are two types of mappings in the DBO that are used to associate building equipment to abstract and canonical concepts.

Translations

A translation is a mapping between a device in the real world and its corresponding concrete and abstract concepts in the DBO. Translations convert the information contained in the device's native data payload into the DBO format.

Links •

A link is a mapping between the standard fields of two entities to pass data between them. Links are used in conjunction with translations whenever a device's native payload cannot be mapped one-to-one with a single abstract concept in the DBO.

Lesson 7.2

Translations

What you'll learn about:

- Translation configuration
- Reporting devices
- Reporting entities
- Point mapping

By the end of this section, you'll be able to:

- Recognize the correct configuration of a translation.
- Understand the relationship between reporting devices, reporting entities, and translations.
- Describe the need for point mapping.

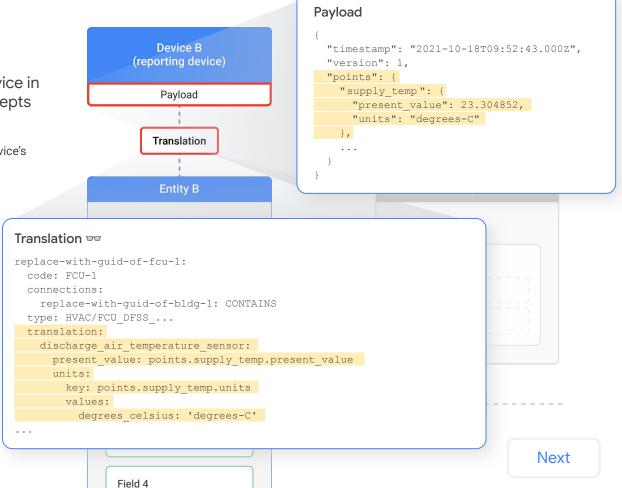
(reporting device) Payload Translation **Entity B** Entity type B Entity type C Field 2 Field 2 Subfield 1 Subfield 1 Link Subfield 3 Subfield 3 Field 3 Subfield 2 Link Dimensional unit Next Field 4 Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0 Multi-state

Device B

Translations

A **translation** is a mapping between a device in the real world and its corresponding concepts in the DBO.

Translations convert the information contained in the device's native data payload into the DBO format.


To the right are samples of an actual payload and its translation.

Do you see the point supply_temp in the payload sample?

How about in the translation sample?

Note: The translation sample is an abridged version of the full code. The . . . indicates abbreviations in the code. Moving forward, you'll notice most samples in this lesson are shortened using

Back

Multi-state

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Translation configuration

Let's break down this translation.

First, you'll see the entity GUID. This is how we identify entities in the building config format. Remember, we're using simplified GUIDs for these examples!

Immediately below the GUID is the "code" for the entity. This is its human-readable name.

This entity coded FCU-1 is the reporting entity, which is the concrete modeling concept what represents the reporting device that sends data.

```
Translation 👓
→ replace-with-guid-of-fcu-1:
 →code: FCU-1
   connections:
     replace-with-quid-of-bldq-1: CONTAINS
   type: HVAC/FCU DFSS ...
   translation:
     discharge air temperature sensor:
       present value: points.supply temp.present value
       units:
         key: points.supply temp.units
         values:
           degrees celsius: 'degrees-C'
 . . .
```

Back

Translation configuration (continued)

Let's break down this translation.

Next, you'll notice a few abstract modeling concepts.

There's the entity type, which represents all of the abstract concepts that describe this reporting entity.

There's a field listed inside the translation block. This field is from the DBO that maps to specific points from the device's native payload.

```
Translation 👓
replace-with-guid-of-fcu-1:
  code: FCU-1
  connections:
    replace-with-quid-of-bldq-1: CONTAINS
→type: HVAC/FCU DFSS ...
  translation:
  →discharge air temperature sensor:
      present value: points.supply temp.present value
      units:
        key: points.supply temp.units
        values:
          degrees celsius: 'degrees-C'
```

Back

Translation configuration (continued)

Let's break down this translation.

Don't mistake some things for a field inside the field block!

Here's the DBO standard field.

Highlighted inside the field block are specific points from the reporting device's native payload. These points are what's converted into the DBO format using a translation.

That means in this sample, the point supply_temp is translated to the field discharge air temperature sensor.

```
Payload
                                             "timestamp": "2021-10-18T09:52:43.000Z",
Translation 👓
                                             "version": 1,
replace-with-guid-of-fcu-1:
                                             "points": {
  code: FCU-1
                                               "supply temp": {
                                                 "present value": 23.304852,
  connections:
                                                "units": "degrees-C"
    replace-with-guid-of-bldg-1: CONT
  type: HVAC/FCU DFSS ...
  translation:
   →discharge air temperature sensor:
      present value: points supply temp.present value
      units:
        key: points supply temp.units
        values:
           degrees celsius: 'degrees-C'
. . .
```

Back

Translation configuration (continued)

Let's break down this translation. **Payload** Also inside the field block is information. "timestamp": "2021-10-18T09:52:43.000Z", Translation 👓 about the field's specific dimensional "version": 1, units or states. In this sample, only units replace-with-guid-of-fcu-1: "points": { are specified because it isn't multi-state. code: FCU-1 "supply temp": { "present value": 23.304852, connections: "units": "degrees-C" replace-with-quid-of-bldg-1: CONT type: HVAC/FCU DFSS ... translation: discharge air temperature sensor: present value: points supply temp. present value →units: key: points. supply temp. units values: Finally, notice the . separator used to degrees celsius: |degrees-C' indicate the access path to the nested keys in the JSON payload.

Back

Mapping with translations

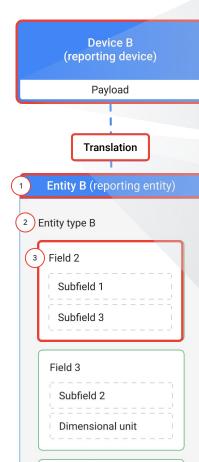
A **translation** maps the native payload of a **reporting device** to the standard fields of a **reporting entity**.

What's a reporting device?

A **reporting device** is any device or system that generates and sends a payload of data to the cloud.

Some examples include:

- A controller for an individual device
- A network controller for multiple devices


What's a reporting entity?

A **reporting entity** is the concrete instance of the reporting device expressed in the building configuration file.

Like all entities, a reporting entity has an entity type, which groups fields and other abstract modeling concepts that describe its properties.

Back

Google

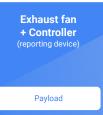
Payload

```
{
  "timestamp": "2021-10-18T09:52:43.000Z",
  "version": 1,
  "points": {
      "supply_temp": {
            "present_value": 23.304852,
            "units": "degrees-C"
      },
            ...
}
```

Translation 👓

```
replace-with-guid-of-fcu-1:
    code: FCU-1
    connections:
        replace-with-guid-of-bldg-1: CONTAINS

2 type: HVAC/FCU_DFSS_...
    translation:
    3 discharge_air_temperature_sensor:
        present_value:
    points.supply_temp.present_value
        units:
        key: pointset.points.supply_temp.uni
        values:
        degrees_celsius: 'degrees-C'
```


Mapping with translations (continued)

A translation maps the native payload of a reporting device to the standard fields of a reporting entity.

Example

Let's say you have an exhaust fan with a controller that you want to model.

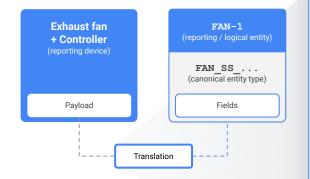
The controller sends the fan's native payload to the cloud, which makes it a reporting device. However, the cloud does not recognize its native payload.


```
Payload
{
    "timestamp": "2021-10-18T09:52:43.000Z",
    "points": {
        "fan_speed": {
            "present_value": 60,
            "units": "hertz"
        },
        "fan_pwr": {
            "present_value": 12.77,
            "units": "kw"
        }
    }
}
```

Back

Click Next to inspect the translation in building config format (human-readable).

Mapping with translations (continued)


A translation maps the native payload of a reporting device to the standard fields of a reporting entity.

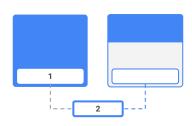
Example (continued)

The exhaust fan is a type of FAN_SS_..., which is a canonical entity type. We'll generate a GUID to properly identify the reporting entity and reference it with the code FAN-1.

Using a translation, you can map the payload to the reporting entity FAN-1 and the standard fields of FAN_SS_.... Since this is a one-to-one mapping, FAN-1 is also a logical entity.

Now the exhaust fan is able to send its translated payload, and the cloud can recognize it.

Translation 👓


```
replace-with-guid-of-fan-1:
  code: FAN-1
  type: FAN SS ...
  translation:
    speed frequency sensor:
      present value: points.fan speed.present value
      units:
        key: points.fan speed.units
        value:
          hertz: 'hertz'
    power sensor:
      present value: points.fan pwr.present value
      units:
        key: points.fan pwr.units
        value:
          kilowatts: 'kw'
```

Back

Click **Next** for a summary of this example.

Mapping with translations (continued)

A translation maps the native payload of a reporting device to the standard fields of a reporting entity.

Example summary

This mapping requires the following entities:

- One logical entity
- One reporting entity
- One canonical entity

In this particular example, the logical, reporting, and canonical entities are all FAN-1.

1. Payload

```
"timestamp": "2021-10-18T09:52:43.000Z",
"points": {
    "fan_speed": {
        "present_value": 60,
        "units": "hertz"
    },
    "fan_pwr": {
        "present_value": 12.77,
        "units": "kw"
    }
}
```

2. Translation 👓

```
replace-with-guid-of-fan-1:
  code: FAN-1
  type: FAN SS ...
  translation:
    speed frequency sensor:
     present value: points. fan speed.present value
      units:
        key: points. fan speed.units
        value:
          hertz: 'hertz'
    power sensor:
     present value: points. fan pwr.present value
      units:
        key: points. fan pwr.units
        value:
          kilowatts: 'kw'
```

Back

Note: Remember, this example is using the human-readable format of the building config (as indicated by the glasses). In your work outside of this lesson, mappings should always be encoded in the correct building config format using an actual GUID.

Point mapping with translations

A translation "tells" the system exactly which points from the native payload that we care about.

A reporting device can send a lot of points in its payload. However, not every point needs to be mapped.

Using translations, you can pinpoint useful data points from a reporting device's payload to map to the fields of a reporting entity. This allows you to omit unnecessary points.

Example

Let's say you have a controller that collects data for a fan.

The controller sends all of this data to the cloud in a single payload, which makes it a reporting device.

However, you don't care to map the status_alarm data point.

The fan is a type of FAN_SS..., which is a canonical entity type. We'll generate a GUID to identify the reporting entity and name it with the code FAN_3.

Using a translation, you can choose to map only the useful points from the payload and omit unnecessary ones like status alarm.

Now the fan is able to send its translated payload, and the cloud can recognize it.

```
Payload
```

```
"timestamp": "2021-10-18T09:52:43.000Z",
"points": {
   "fan_speed": {
        "present_value": 60,
        "units": "hertz"
    },
    "status_alarm": {
        "present_value": OFF
    }
}

Translation

replace-with-guid-of-fan-3:
    code: FAN-3
    type: FAN_SS_...
    translation:
    speed_frequency_sensor:
    present_value: points
    units:
    key: points fan_speed
```

```
type: FAN_SS_...
translation:
    speed_frequency_sensor:
    present_value: points fan_speed.present_value
    units:
        key: points fan_speed.units
        value:
            hertz: 'hertz'
#NOTE status alarm isn't translated, because not
```

everything in the payload must be translated.

Back

Note: You'll learn more about required device data and determining what needs to be modeled in Module 2: Data modeling with the DBO.

Lesson 7

Knowledge check 1

Let's take a moment to reflect on what you've learned so far.

- The next slide will have a question about translations.
- Review the question and select the correct response.
- After this knowledge check, you'll move on to learn about mapping with links.

You won't be able to move forward until the correct answer is selected.

Click **Next** when you're ready to begin.

Knowledge check 1

A sample payload is on the right.

Given this payload, which translation is configured correctly?

Select the best answer from the options listed below.

```
replace-with-guid-of-fan-1:
    code: FAN-1
    translation:
    speed_frequency_sensor:
        present_value: points.fan_speed.present_value
        units:
            key: points.fan_speed.units
            value:
                hertz: 'hertz'
    power_sensor:
        present_value: points.fan_pwr.present_value
        units:
            key: points.fan_pwr.units
            value:
            kilowatts: 'kw'
```

```
{
  "timestamp": "2021-10-18T09:52:43.000Z",
  "points": {
      "fan_speed": {
            "present_value": 60,
            "units": "hertz"
      },
      "fan_pwr": {
            "present_value": 12.77,
            "units": "kw"
      }
    }
}
```



```
replace-with-guid-of-fan-1:
    code: FAN-1
    type: FAN_SS_...
    translation:
    speed_frequency_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
            hertz: 'hertz'
    power_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
        kilowatts: 'kw'
```

```
replace-with-guid-of-fan-1:
 code: FAN-1
 type: FAN SS ...
 translation:
   speed frequency sensor:
     present value: points.fan pwr.present value
     units:
        key: points.fan pwr.units
       value:
         hertz: 'hertz'
    power sensor:
     present value: points.fan speed.present value
     units:
       key: points.fan speed.units
       value:
         kilowatts 'kw'
```

Back

Note: Don't worry! We've already provided the standard fields for you. For this question, pay attention to the configuration of each option based on the information you're given from the sample. Also note that the translation options are shown in the human-readable format (val) of the building config.

Hmm, that's not right!

Look closely! This translation is missing an entity type. Remember, an entity should always have an entity type.

Try again

```
replace-with-guid-of-fan-1:
   code: FAN-1
   translation:
    speed frequency_sensor:
        present_value: points.fan_speed.present_value
        units:
        key: points.fan_speed.units
        value:
            hertz: 'hertz'
   power_sensor:
        present_value: points.fan_pwr.present_value
        units:
        key: points.fan_pwr.units
        value:
        kilowatts: 'kw'
```

```
replace-with-guid-of-fan-1:
   code: FAN-1
   type: FAN_SS_...
   translation:
    speed_frequency_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
            hertz: 'hertz'
   power_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
            kilowatts: 'kw'
```

```
replace-with-guid-of-fan-1:
   code: FAN-1
   type: FAN_SS_...
   translation:
   speed_frequency_sensor:
    present_value: points.fan_pwr.present_value
   units:
        key: points.fan_pwr.units
        value:
        hertz: 'hertz'
   power_sensor:
   present_value: points.fan_speed.present_value
   units:
        key: points.fan_speed.units
        value:
        key: points.fan_speed.units
        value:
        kilowatts: 'kw'
```

Back

That's right! 🎉

This translation does the following:

- The point fan_speed translates to the field speed frequency sensor.
- The point fan_pwr translates to the field power_sensor.

```
replace-with-guid-of-fan-1:
  code: FAN-1
  translation:
    speed_frequency_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
        hertz: 'hertz'
  power_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
            kilowatts: 'kw'
```

```
{
    "timestamp": "2021-10-18T09:52:43.000Z",
    "points": {
        "fan_speed": {
            "present_value": 60,
            "units": "hertz"
        },
        "fan_pwr": {
            "present_value": 12.77,
            "units": "kw"
        }
    }
}
```

```
Reporting device

Payload

Translation

FAN-1
```

```
replace-with-guid-of-fan-1:
    code: FAN-1
    type: FAN_SS_...
    translation:
    speed_frequency_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
        hertz: 'hertz'

power_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
        key: points.fan_pwr.units
        value:
        key: points.fan_pwr.units
        value:
        kilowatts: 'kw'
```

```
replace-with-guid-of-fan-1:
    code: FAN-1
    type: FAN_SS_...
    translation:
    speed_frequency_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
        hertz: 'hertz'
    power_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
        kilowatts: 'kw'
```

Back

Click Next to move on to and learn about mapping with links.

Hmm, that's not right!

Look closely! It doesn't make much sense to translate the

point fan pwr to the field speed frequency sensor.

Try again

```
replace-with-guid-of-fan-1:
   code: FAN-1
   translation:
   speed_frequency_sensor:
      present_value: points.fan_speed.present_value
      units:
        key: points.fan_speed.units
      value:
        hertz: 'hertz'
   power_sensor:
      present_value: points.fan_pwr.present_value
      units:
      key: points.fan_pwr.units
      value:
        kilowatts: 'kw'
```

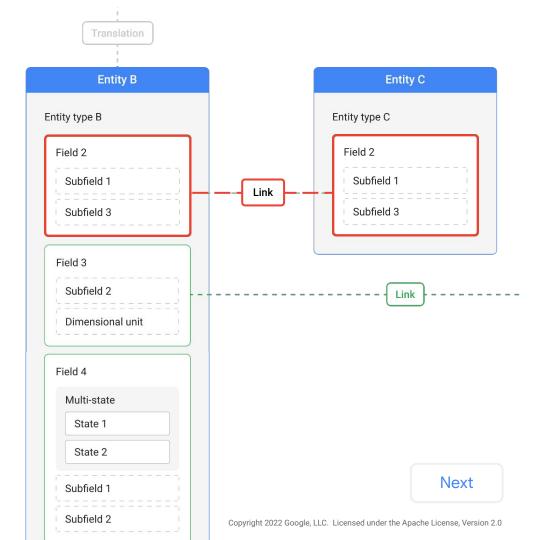
```
replace-with-guid-of-fan-1:
  code: FAN-1
  type: FAN_SS_...
  translation:
    speed_frequency_sensor:
    present_value: points.fan_speed.present_value
    units:
        key: points.fan_speed.units
        value:
            hertz: 'hertz'
  power_sensor:
    present_value: points.fan_pwr.present_value
    units:
        key: points.fan_pwr.units
        value:
        key: points.fan_pwr.units
        value:
        key: points.fan_pwr.units
        value:
        kilowatts: 'kw'
```

```
replace-with-guid-of-fan-1:
 code: FAN-1
 type: FAN SS ...
 translation:
   speed frequency sensor:
     present value: points.fan pwr.present value
     units:
       key: points.fan pwr.units
       value:
         hertz: 'hertz'
   power sensor:
     present value: points.fan speed.present value
     units:
       key: points.fan speed.units
       value:
         kilowatts: 'kw'
```

Back

Lesson 7.3

Links

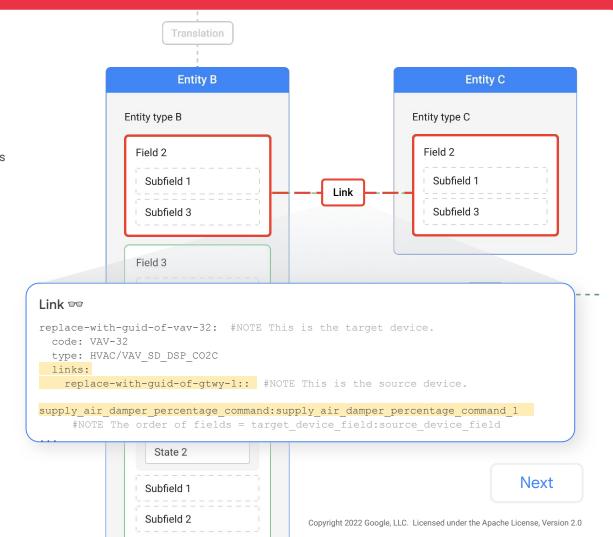

What you'll learn about:

- Link configuration
- Virtual entities
- Passthrough entities

By the end of this section, you'll be able to:

- Recognize the correct configuration of a link.
- Determine when a virtual entity is needed.
- Understand the dependencies between links and translations for data modeling.
- Determine when a passthrough entity is needed.

Links

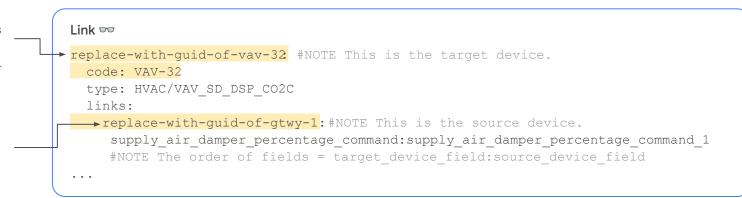

A **link** is a mapping between the standard fields of two entity types.

Links are used together with translations whenever a device's native payload can't be mapped one-to-one with a single abstract concept in the DBO.

To the right is a sample of a link. You'll notice there isn't a sample payload, though.

Can you think of why there isn't a sample payload here?

If not, that's alright! You'll find out in a few slides.



Link configuration

Let's break down this link.

First, you'll see the entity GUID followed by the entity's "code." This is the target entity, which defines the link.

Inside the links block, you'll see the GUID of another entity. This is the source entity, which lists its fields that are linked to the target entity.

Back

Note: The concept of source and target entities is also important for connections, which you'll learn about in Lesson 8: Connections.

Link configuration (continued)

Let's break down this link.

Next, you'll notice a few abstract modeling concepts. Link 👓 replace-with-quid-of-vav-32: #NOTE This is the target device. There's the entity type, which code: VAV-32 represents all of the abstract →type: HVAC/VAV SD DSP CO2C concepts that describe the links: target entity. replace-with-quid-of-qtwy-1: #NOTE This is the source device. → supply air damper percentage command:supply air damper percentage command 1 In the source entity block, #NOTE The order of fields = target device field:source_device_field you'll see lines with two . . . fields.

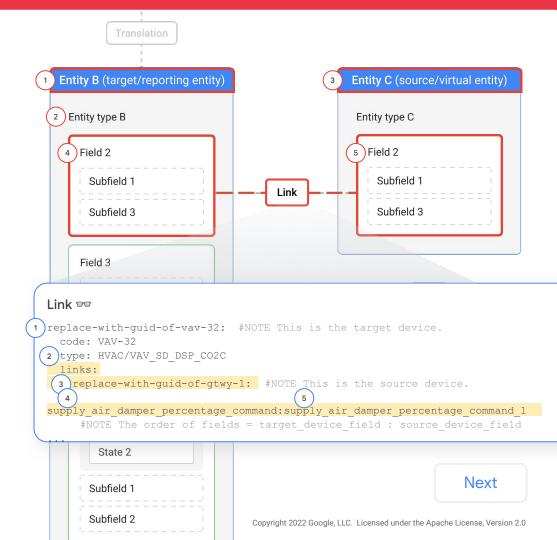
The first field is from the target entity.

The second field is from the source entity.

Back

Mapping with links

Linking the standard fields of one entity to the standard fields of another entity results in a **virtual entity**.


What's a virtual entity?

A **virtual entity** is a representation of a logical entity constructed by linking the fields of a reporting entity to the fields of a logical entity.

Why are virtual entities needed?

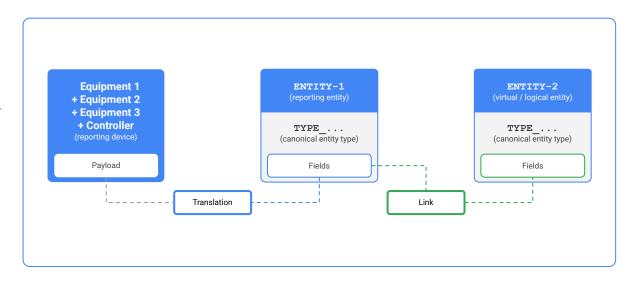
Virtual entities are needed any time a reporting device can't map one-to-one with a single logical entity. Some use cases include:

- You want to include data from one reporting device in multiple logical entities.
- You want to model a reporting device with multiple components that send their payload via the same network controller.

Mapping with links and translations

Links are used in conjunction with **translations** to map the payload of a **reporting device** to the fields of a **virtual entity**.

So, why isn't there a payload?


Compared to a translation, links don't deal with the reporting device's payload directly.

Links only map fields to other fields. And remember, fields by themselves don't deal with the payload. They need to be mapped to a device's payload and its specific points with a translation.

Links can't do the job alone

Remember, the purpose of mapping is to associate the native payload of a building's equipment with the abstract and canonical concepts of the DBO.

Since links only map fields to other fields, there must be a valid translation between a reporting device's payload and a reporting entity's fields. This can result in many different ways to combine links and translations.

Back

Note: A model using only a translation mapping can be valid. However, a model only using a link mapping is never valid.

Links are used in conjunction with **translations** to map the payload of a **reporting device** to the fields of a **virtual entity**.

Example

Let's say you have a fan coil unit (FCU) with a zone temperature (ZNT) sensor and a single controller. You want to model the ZNT sensor as its own device because it's in a different room than the FCU.

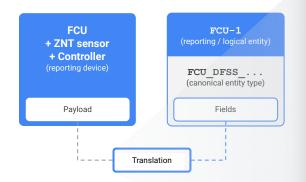
The FCU's controller sends the device's native payload to the cloud, which makes it a reporting device. However, the cloud doesn't recognize its native payload.


```
Payload

{
    "timestamp": "2021-10-18T09:52:43.000Z",
    "points": {
        "zone_temperature": {
            "present_value": 72.43,
            "units": "degrees-F"
        },
        "zone_temperature_setpoint": {
            "present_value": 71,
            "units": "degrees-F"
        },
        "discharge_temp": {
            "present_value": 55.232,
            "units": "degrees-F"
        },
        "status_alarm": {
            "present_value": OFF
        }
    }
}
```

Back

Click **Next** to inspect the translation in building config format (human-readable).


Links are used in conjunction with translations to map the payload of a reporting device to the fields of a virtual entity.

Example (continued)

The FCU is a type of FCU_DFSS_..., which is a canonical entity type. We'll generate a GUID to properly identify the reporting entity and reference it with the code FCU-1.

Using a translation, you can map the payload to the reporting entity FCU-1 and standard fields of FCU_DFSS_.... Since this is a one-to-one mapping, FCU-1 also a logical entity.

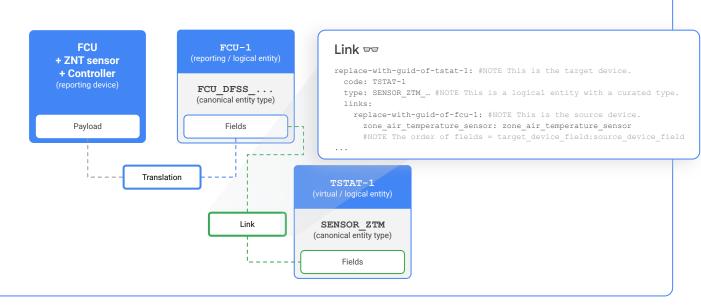
Now the FCU can send its translated payload, and the cloud can recognize it. However, the ZNT isn't modeled as its own device. It's just a field living on the FCU.

Translation 👓

```
replace-with-guid-of-fcu-1:
 code: FCU-1
 type: FCU DFSS ... #NOTE This is a logical entity with a curated type.
 translation:
   zone air temperature sensor:
     present value: points.zone temperature.present value
       key: points.zone temperature.units
       value:
         degrees fahrenheit: 'degrees-F'
   zone air temperature setpoint:
     present value: points.zone temperature setpoint.present value
     units:
       key: points.zone temperature setpoint.units
       value:
         degrees fahrenheit: 'degrees-F'
   discharge air temperature sensor:
     present value: points.discharge temp.present value
       key: points.discharge temp.units
         degrees fahrenheit: 'degrees-F'
   #NOTE status alarm isn't translated, because not everything in the
```

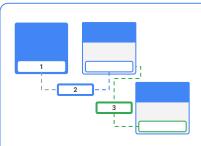
Back

Click Next to inspect the link in building config format (human-readable).


Links are used in conjunction with **translations** to map the payload of a **reporting device** to the fields of a **virtual entity**.

Example (continued)

The ZNT sensor is a type of SENSOR_ZTM and a canonical entity type. Since it's something we care to model, we'll generate a GUID to properly identify the virtual entity and reference it with the code TSTAT-1.


However, the ZNT sensor can't map one-to-one to the fields of SENSOR_ZTM, because the reporting device's payload is already mapped to FCU-1.

Using links, you can map the fields of the reporting entity FCU-1 to the fields of the virtual entity TSTAT-1. Now these entities share the same ZNT sensor value.

Back

Click **Next** for a summary of this example.

Example summary

This mapping requires the following:

- Two logical entities: FCU-1, TSTAT-1
 - One reporting entity: FCU-1
 - One virtual entity: TSTAT-1
- Two canonical entity types: FCU_DFSS_..., SENSOR_ZTM_...

1. Payload

```
"timestamp": "2021-10-18T09:52:43.000Z",
"points": {
   "zone_temperature": {
    "present_value": 72.43,
    "units": "degrees-F"
},
   "zone_temperature_setpoint": {
    "present_value": 71,
    "units": "degrees-F"
},
   "discharge_temp": {
    "present_value": 55.232,
    "units": "degrees-F"
},
   "status_alarm": {
    "present_value": OFF
}
```

2. Translation

value:

units:

units:

value:

code: FCU-1

translation:

replace-with-guid-of-fcu-1:

zone air temperature sensor:

zone air temperature setpoint:

discharge air temperature sensor:

3. Link 👓

```
replace-with-guid-of-tstat-1: #NOTE This is the target de code: TSTAT-1

type: SENSOR_ZTM_... #NOTE This is a logical entity with links:
    replace-with-guid-of-fcu-1: #NOTE This is the source device.

    zone_air_temperature_sensor: zone_air_temperature_sensor
    #NOTE The order of fields = target_device_field:source_device_field
```

Back

Note: Remember, this example is using the human-readable format of the building config (as indicated by the glasses 👓). In your work outside of this lesson, mappings should always be encoded in the correct building config format using an actual GUID.

Next

type: FCU DFSS ... #NOTE This is a logical entity with a curated type.

present_value: points.zone_temperature_setpoint.present value

present value: points.zone temperature.present value

key: points.zone temperature setpoint.units

present value: points.discharge temp.present value

key: points.zone temperature.units

degrees fahrenheit: 'degrees-F'

degrees fahrenheit: 'degrees-F'

key: points.discharge temp.units

Lesson 7

Knowledge check 2

Let's take a moment to reflect on what you've learned so far.

- The next slide will have a question about translations.
- Review the question and select the correct response.
- After this knowledge check, you'll move on to learn about mapping with passthrough entities.

You won't be able to move forward until the correct answer is selected.

Click **Next** when you're ready to begin.

Knowledge check 2

A sample translation is on the right.

Given this translation, which link is configured correctly?

Select the best answer from the options listed below.

```
replace-with-guid-of-ef-1: #NOTE This is target device.
  code: EF-1
  type: FAN_SS_...
  links:
      speed_frequency_sensor: speed_frequency_sensor_1
      power_sensor: power_sensor_1
  ...
```

```
replace-with-guid-of-gtwy-1:
 code: GTWY-1
 type: GATEWAYS/PASSTHROUGH
 translation:
   speed frequency sensor 1:
     present value: points.ef 1 speed.present value
     units:
       key: points.ef 1 speed.units
       value:
         hertz: 'hertz'
   speed frequency sensor 2:
     present value: points.ef 2 speed.present value
       key: points.ef 2 speed.units
       value:
         hertz: 'hertz'
   power sensor 1:
     present value: points.ef 1 kw.present value
     units:
       key: points.ef 1 kw.units
       value.
         kilowatts: 'kw'
   power sensor 2:
     present value: points.ef 2 kw.present value
     units:
       key: points.ef 2 kw.units
       value:
         kilowatts: 'kw'
```

```
Reporting
 device
 Payload
Translation
  Fields
  Link
 EF-1
  Fields
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
code: EF-1
type: FAN_SS_...
links:
   the-gtwy-guid:
       speed_frequency_sensor_1: speed_frequency_sensor
       power_sensor_1: power_sensor
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
  code: EF-1
  type: FAN_SS_...
  links:
    the-gtwy-guid:
       speed_frequency_sensor: speed_frequency_sensor_1
       power_sensor: power_sensor_1
...
```

Back

Note: Don't worry! We've already provided the standard fields for you. For this question, pay attention to the configuration of each option based on the information you're given from the sample. Also note that the translation options are shown in the human-readable format (value) of the building config.

Hmm, that's not right!

This link isn't configured correctly because it doesn't name the source entity. In this sample, the source entity is GTWY-1 and the target entity is EF-1.

Try again

```
Reporting
replace-with-guid-of-gtwy-1:
                                                                                    device
 code: GTWY-1
 type: GATEWAYS/PASSTHROUGH
 translation:
   speed frequency sensor 1:
                                                                                    Payload
     present value: points.ef 1 speed.present value
      units:
       key: points.ef 1 speed.units
                                                                                   Translation
       value:
         hertz: 'hertz'
   speed frequency sensor 2:
      present value: points.ef 2 speed.present value
     units:
       key: points.ef 2 speed.units
       value:
         hertz: 'hertz'
                                                                                     Fields
   power sensor 1:
     present value: points.ef 1 kw.present value
                                                                                     Link
       key: points.ef 1 kw.units
       value:
         kilowatts: 'kw'
   power sensor 2:
     present value: points.ef 2 kw.present value
      units:
       key: points.ef 2 kw.units
       value:
                                                                                     Fields
         kilowatts: 'kw'
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
 code: EF-1
 type: FAN SS ...
 links:
     speed frequency sensor: speed frequency sensor 1
     power sensor: power sensor 1
```

Back

Hmm, that's not right!

This link isn't configured correctly because the fields aren't listed in the correct order in the source entity block. The first field should be from the target entity EF-1, and the second field should be from the source entity GTWY-1.

Try again

```
replace-with-guid-of-gtwy-1:
                                                                                   Reporting
                                                                                    device
 code: GTWY-1
 type: GATEWAYS/PASSTHROUGH
 translation:
   speed frequency sensor 1:
                                                                                    Payload
     present value: points.ef 1 speed.present value
      units:
       key: points.ef 1 speed.units
                                                                                   Translation
        value:
         hertz: 'hertz'
   speed frequency sensor 2:
      present value: points.ef 2 speed.present value
      units:
        key: points.ef 2 speed.units
       value:
         hertz: 'hertz'
                                                                                     Fields
   power sensor 1:
     present value: points.ef 1 kw.present value
                                                                                     Link
        key: points.ef 1 kw.units
        value:
         kilowatts: 'kw'
                                                                                    EF-1
   power sensor 2:
     present value: points.ef 2 kw.present value
      units:
        key: points.ef 2 kw.units
       value:
                                                                                     Fields
         kilowatts: 'kw'
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
 code: EF-1
 type: FAN SS ...
 links:
    the-atwy-auid:
      speed frequency sensor 1: speed frequency sensor
     power sensor 1: power sensor
```

Back

This link is configured correctly, because:

- It names the target entity EF-1.
- It has a canonical entity type **FAN_SS_...**
- It names the source entity **GTWY-1**.
- It lists the linked fields in the correct order:
 - First field is from the target entity.
 - o Second field is from the source entity.

```
Reporting
replace-with-guid-of-gtwy-1:
                                                                                    device
 code: GTWY-1
 type: GATEWAYS/PASSTHROUGH
 translation:
   speed frequency sensor 1:
                                                                                     Payload
     present value: points.ef 1 speed.present value
     units:
       key: points.ef 1 speed.units
                                                                                   Translation
        value:
         hertz: 'hertz'
   speed frequency sensor 2:
      present value: points.ef 2 speed.present value
      units:
        key: points.ef 2 speed.units
       value:
         hertz: 'hertz'
                                                                                     Fields
   power sensor 1:
     present value: points.ef 1 kw.present value
                                                                                     Link
        key: points.ef 1 kw.units
        value:
         kilowatts: 'kw'
                                                                                     EF-1
   power sensor 2:
     present value: points.ef 2 kw.present value
      units:
        key: points.ef 2 kw.units
        value:
                                                                                     Fields
         kilowatts: 'kw'
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
  code: EF-1
  type: FAN_SS_...
  links:
      speed_frequency_sensor: speed_frequency_sensor_1
      power_sensor: power_sensor_1
  ...
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.

code: EF-1
type: FAN_SS_...
links:
the-gtwy-guid:
speed_frequency_sensor_1: speed_frequency_sensor
power_sensor_1: power_sensor
```

```
replace-with-guid-of-ef-1: #NOTE This is target device.
    code: EF-1
    type: FAN_SS_...
    links:
      the-gtwy-guid:
        speed_frequency_sensor: speed_frequency_sensor_1
        power_sensor: power_sensor_1
...
```

Back

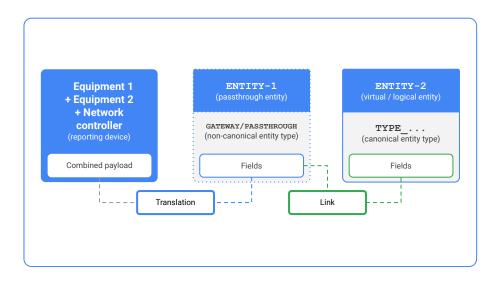
Click Next to move on and learn about mapping with passthrough entities.

Mapping with a passthrough entity

A passthrough entity may be needed if a reporting device can't map one-to-one with a logical entity.

What's a passthrough entity?

A **passthrough entity** is a reporting entity that does nothing more than pass data from a network controller to logical entities.


Why are passthrough entities needed?

The only use case for a passthrough entity is when a network controller needs to be mapped. Network controllers send a combined payload for multiple devices, but there isn't a canonical type for them in the DBO.

In these instances, the network controller's combined payload needs to be translated to a passthrough entity, then linked to a virtual entity for each device in the combined payload.

What's a passthrough entity type?

Passthrough entities use the special entity type <u>GATEWAYS/PASSTHROUGH</u>. It's a non-canonical type with a unique feature allowing the passthrough entity to have any standard field defined on it for translations.

Back

Note: Passthrough entity types are reserved exclusively for the use of passthrough entities.

A passthrough entity does nothing more than pass data from a network controller to logical entities.

Example

Let's say you have two exhaust fans that you'd like to model. The fans have a network controller that sends their combined payload to the cloud, which makes it a reporting device. However, the cloud doesn't recognize the combined native payload.

Exhaust fan 1
+ Exhaust fan 2
+ Network
controller
(reporting device)

Combined payload

```
{
  "timestamp": "2021-10-18T09:52:43.000Z",
  "points": {
      "ef_1_speed": {
            "present_value": 60,
            "units": "hertz"
      },
      "ef_2_speed": {
            "present_value": 45,
            "units": "hertz"
      },
      "ef_1_kw": {
            "present_value": 12.77,
            "units": "kw"
      }
      "ef_2_kw": {
            "present_value": 6.753,
            "units": "kw"
      },
      */
}
```

Back

Click **Next** to inspect the passthrough entity in building config format.

A passthrough entity does nothing more than pass data from a network controller to logical entities.

Example (continued)

GATEWAYS/PASSTHROUGH.

The network controller doesn't have a canonical entity type. Instead, GATEWAYS/PASSTHROUGH is needed, which is a non-canonical entity type reserved exclusively for instances involving network controllers and passthrough entities.

We'll generate a GUID to properly identify the passthrough entity for the network controller, reference it with the code GTWY-1, and associate it with the special entity type

Now the network controller's combined payload can be translated.

Exhaust fan 1
+ Exhaust fan 2
+ Network
controller
(reporting device)

GTWY-1
(passthrough entity

GATEWAYS/PASSTHRO

GATEWAYS/PASSTHROUGH (non-canonical entity type)

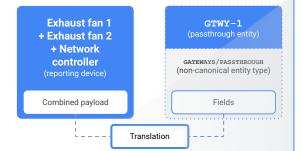
Passthrough entity type

PASSTHROUGH:

id: "5942334369254342656"

description: "A device that provides translations for virtual entities." allow undefined fields: true

Back


Click **Next** to inspect the translation in building config format (human-readable).

A passthrough entity does nothing more than pass data from a network controller to logical entities.

Example (continued)

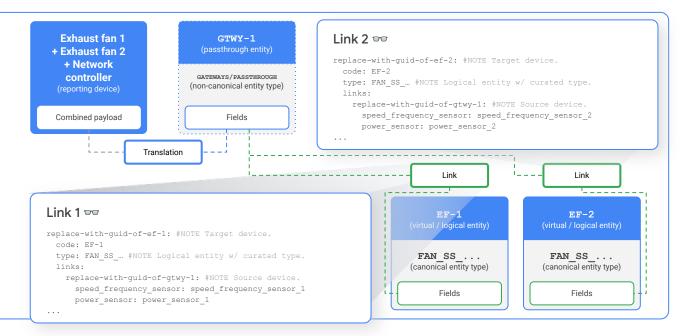
Using a translation, you can map the combined payload to the passthrough entity GTWY-1 and any required standard fields.

Now the network controller is able to send its translated payload, and the cloud can recognize it. However, the exhaust fans aren't modeled as their own devices yet.

Translation 👓

```
replace-with-guid-of-gtwy-1:
  code: GTWY-1
  type: GATEWAYS/PASSTHROUGH#NOTE This type is just for gateways.
  translation:
    speed frequency sensor 1:
     present value: points.ef 1 speed.present value
       key: points.ef 1 speed.units
       value:
         hertz: 'hertz'
    speed frequency sensor 2:
      present value: points.ef 2 speed.present value
        key: points.ef 2 speed.units
       value:
         hertz: 'hertz'
   power sensor 1:
     present value: points.ef 1 kw.present value
       key: points.ef 1 kw.units
       value:
         kilowatts. 'kw'
    power sensor 2:
      present value: points.ef 2 kw.present value
       key: points.ef 2 kw.units
       value:
         kilowatts: 'kw'
```

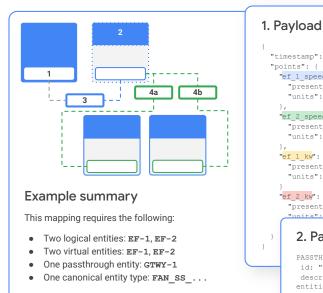
Back


Click Next to inspect the links in building config format (human-readable).

A passthrough entity does nothing more than pass data from a network controller to logical entities.

Example (continued)

The exhaust fans are types of FAN_SS_... and canonical entity types. Since we care to model both of the fans, we'll generate GUIDs to properly identify these logical entities and reference them with the codes EF-1 and EF-2.


Using two links, you can map the fields of GTWY-1 to the fields of EF-1 and EF-2. Now the cloud recognizes the combined native payload of the two exhaust fans.

Back

Click **Next** for a summary of this example.

A passthrough entity does nothing more than pass data from a network controller to logical entities.


```
"timestamp": "2021-10-18T09:52:43.000Z",
"points":
  "ef 1 speed": {
   "present value": 60,
   "units": "hertz"
  "ef 2 speed": {
    "present value": 45,
    "units": "hertz"
  "ef 1 kw": {
    "present value": 12.77,
    "units": "kw"
  ef 2 kw": {
    "present value": 6.753,
    "unite". "bw"
```

2. Passthrough entity type

description: "A device that provides t

id: "5942334369254342656"

allow undefined fields: true

entities."

```
3. Translation
replace-with-guid-of-gtwy-1:
  code: GTWY-1
  type: GATEWAYS/PASSTHROUGH#NOTE This
  translation:
   speed frequency sensor 1:
     present value: pointsef 1 speed.pre
      units:
        key: pointsef 1 speed.units
        value:
         hertz: 'hertz'
   speed frequency sensor 2:
     present_value: pointsef_2_speed.present value
        key: pointsef 2 speed units
        value:
         hertz: 'hertz'
   power sensor 1:
     present value: pointsef 1 kw.preser
      units:
        key: pointsef 1 kw.units
        value:
          kilowatts: 'kw'
   power sensor 2:
     present value: pointsef 2 kw.preser
      units:
        key: pointsef 2 kw.units
        value:
```

kilowatts: 'kw'

```
4a. Link 1 👓
replace-with-guid-of-ef-1:#NOTE Target device.
 code: EF-1
 type: FAN SS ... #NOTE Logical entity w/ curated type.
 links:
    replace-with-guid-of-gtwy-1:#NOTE Source device.
     speed frequency sensor: speed frequency sensor 1
     power_sensor: power_sensor 1
4b. Link 2 👓
replace-with-guid-of-ef-2: #NOTE Target device.
  code: EF-2
  type: FAN SS ... #NOTE Logical entity w/ curated type.
    replace-with-guid-of-gtwv-1:#NOTE Source device.
     speed frequency sensor: speed frequency sensor 2
     power sensor: power sensor 2
```

Back

Note: Remember, this example is using the human-readable format of the building config (as indicated by the glasses 👓). In your work outside of this lesson, mappings should always be encoded in the correct building config format using an actual GUID.

Lesson 7

Knowledge check 3

Let's take a moment to reflect on what you've learned so far.

- The next slides will have one scenario with six questions to think about.
- Answer each question on your own and select the question to check your answer.
- After this knowledge check, you'll wrap up Lesson 7.

Click **Next** when you're ready to begin.

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many entities are required to model this scenario?

How many logical entities are required to model this scenario?

How many **canonical entity types** are required to model this scenario?

How many **reporting entities** are required to model this scenario?

How many **passthrough entities** are required to model this scenario?

How many virtual entities are required to model this scenario?

Back

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many entities are required to model this scenario? How many logical entities are required to model this scenario? How many canonical entity types are required to model this scenario? How many reporting entities are required to model this scenario? How many passthrough entities are required to model this scenario? How many virtual entities are required to model this scenario?

A total of **twelve entities** are needed to model this scenario. Each piece of equipment and network controller needs its own entity.

Next

Back

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many **entities** are required to model this scenario?

How many logical entities are required to model this scenario?

How many canonical entity types are required to model this scenario?

How many **reporting entities** are required to model this scenario?

How many passthrough entities are required to model this scenario?

How many virtual entities are required to model this scenario?

Back

Check your answer! **Q**

Ten logical entities are needed: one for each device that needs to be modeled. A logical entity is also called a canonical entity. It maps one-to-one with a canonical entity type.

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

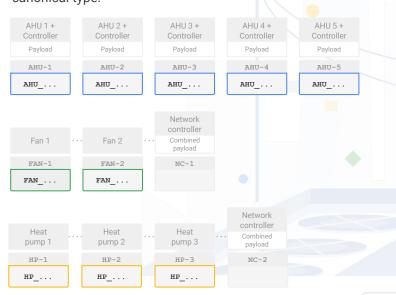
How many **entities** are required to model this scenario?

How many logical entities are required to model this scenario?

How many canonical entity types are required to model this scenario?

How many **reporting entities** are required to model this scenario?

How many **passthrough entities** are required to model this scenario?


How many **virtual entities** are required to model this scenario?

Back

Check your answer!

Three canonical entity types are needed. One for the AHUs, one for the fans, and one for the heat pumps. Network controllers don't have a canonical type.

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many entities are required to model this scenario?

How many logical entities are required to model this scenario?

How many canonical entity types are required to model this scenario?

How many reporting entities are required to model this scenario?

How many passthrough entities are required to model this scenario?

How many virtual entities are required to model this scenario?

Back

Check your answer! **Q**

Seven reporting entities are needed. One reporting entity for each reporting device (i.e., things that sends a payload of data).

On the roof of a building, there are:

- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many **entities** are required to model this scenario?

How many logical entities are required to model this scenario?

How many canonical entity types are required to model this scenario?

How many **reporting entities** are required to model this scenario?

How many passthrough entities are required to model this scenario?

How many virtual entities are required to model this scenario?

Back

Check your answer! 🤵

Two passthrough entities are needed. The two network controllers can't map one-to-one with a logical entity. The passthrough entities will use the entity type **GATEWAYS/PASSTHROUGH**.

On the roof of a building, there are:

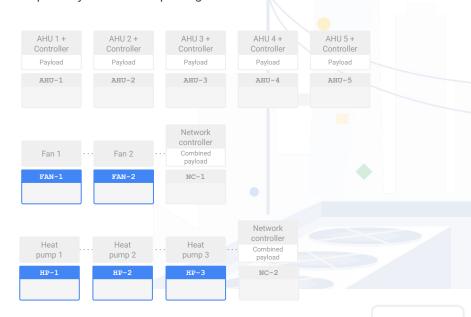
- Five identical, standard AHUs. Each AHU sends its own payload to the cloud through their individual onboard controllers
- Two identical, standard fans. Their payload is combined and sent to the cloud through a network controller.
- Three identical, standard heat pumps. Their payload is combined and sent to the cloud through another network controller.

Think about each question below. Select the question to check your answer.

How many entities are required to model this scenario?

How many logical entities are required to model this scenario?

How many canonical entity types are required to model this scenario?


How many reporting entities are required to model this scenario?

How many passthrough entities are required to model this scenario?

How many virtual entities are required to model this scenario?

Five virtual entities are needed. These devices need to be modeled separately from their reporting entities.

Next

Back

Lesson 7 summary

Let's review what you learned about:

- Mappings and logical devices
- Translations, reporting devices, reporting entities, and point mapping
- Links, virtual entities, and passthrough entities

Now you should be able to:

- Describe the purpose of mapping.
- Recognize the correct configuration of a translation.
- Recognize the correct configuration of a link.
- Describe the need for point mapping.
- Understand the dependencies between links and translations for data modeling.
- Determine when reporting entities, virtual entities, and passthrough entities are needed.

Back

Note: Remember, the examples in this lesson that were marked with glasses we used the human-readable format of the building config. In your own work, mappings should always be encoded in the correct building config format using an actual GUID.

You completed Lesson 7!

Now's a great time to take a quick break before starting Lesson 8.

Ready for Lesson 8?

Let's go!

Back

Helpful resources

For future reference, keep these resources easily accessible for technical and procedural questions.

- GUID Generator and <u>Digital Buildings toolkit</u>
 Used with old format config files to create GUIDs and convert to new format.
- digitalbuildings / ontology
 Contains the documentation and configuration files for the DBO.
- digitalbuildings / ontology / docs / <u>building_config.md</u>
 Describes the configuration format for mapping concrete assets to a model.
- <u>Digital Buildings Project GitHub</u>
 Contains source code, tooling, and documentation for the DBO.