
Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Master Systems Integrator
(MSI) onboarding

Module 2 | Lesson 5

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Before you get started
This onboarding deck has interactive features and activities that enable a self-guided learning experience.
To help you get started, here are two tips for viewing and navigating through the deck.

Navigate by clicking the buttons and links.
● Click the Back or Next buttons to go backward or forward in the

deck. Moving forward, you’ll find them in the bottom corners of every
slide.

● Click blue text to go to another slide in this deck or open a new page
in your browser.

● For the best learning experience, using your keyboard or mouse
wheel to navigate is discouraged.

View this deck in presentation mode.
● To enter presentation mode, you can either:

○ Click the Present or Slideshow button in the top-right corner of
this page.

○ Press Ctrl+F5 (Windows), Cmd+Enter (macOS), or Ctrl+Search+5
(Chrome OS) on your keyboard.

● To exit presentation mode, press the Esc key on your keyboard.

Ready to get started?

1 2

Let’s go!

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Propose an ontology extension
You may find that the DBO doesn’t have a concept that can
describe parts of or all of the entity you’re modeling. If this
happens, then you’ll need to propose an ontology extension
to add new models to the DBO.

Workflow revisited
Here’s the recommended workflow for data modeling from Lesson 1.

In this lesson, you’ll walk through the fourth step of data modeling with the DBO.

Determine which
devices need to
be modeled

Determine which
data points are
required

Construct and
finalize the building
configuration file

Validate the
instance and
telemetry

Handoff to Google
BOS

Name each data
point using
the DBO

1 2 3 4 5 6 7

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Lesson 5

Propose an ontology
extension

What you’ll learn about:
● Ontology extensions

By the end of this lesson, you’ll be able to:
● Submit a pull request to propose an ontology extension for:

○ Subfields
○ Fields
○ Abstract types
○ Non-abstract types

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

What is an ontology extension?
While the Digital Building Ontology (DBO) covers a wide array of devices and functionalities, it is impossible to anticipate
the needs of every building.

What if the DBO doesn’t have what I’m looking for?
If there is a gap in the ontology, you’ll need to create the missing item – if it is really needed. You’ll then submit a proposal that the ontology be extended to include your
new item. The process of creating, submitting, and approving new items for the ontology is called an ontology extension.

While any part of the ontology can be extended, the following are extended most frequently:
● Subfields

● Fields

● Abstract types

● Canonical types

For the purpose of this lesson, we will focus on these types of extensions.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Double-check that what you need ISN’T already in the ontology.
Have you made sure that what you need isn’t already in the ontology, but phrased differently
than you expected? Have you checked that what you need isn’t described in a sub- or
super-set of subfields?

Using the Ontology Explorer, you can see what fields are typically used by common
canonical entities. You can note from this exploration what fields are typically used. For
example, you might have a VAV with a damper and airflow control. By using the Ontology
Explorer, you can see that a common VAV (perhaps you choose VAV_SD_DSP as an
example) will have the following required fields:

● supply_air_damper_percentage_command
● supply_air_flowrate_sensor
● supply_air_flowrate_setpoint
● zone_air_cooling_temperature_setpoint
● zone_air_heating_temperature_setpoint
● zone_air_temperature_sensor

From this, you can make some inferences about what fields are typically used for these
devices and can then determine if what you are looking for is already modeled somewhere.

1

Tips for proposing an ontology extension
Here are two general tips to make sure your proposal encounters minimal problems.

Back NextNote: For more about using the Ontology Explorer, revisit the walk through of each of its options in Lesson 3.

https://docs.google.com/presentation/d/1pwCyfNM5qcKM2ejnccZbdeCzmBHaPWYfIN9ctzAlWJw/present

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Tips for proposing an ontology extension (continued)
Here are two general tips to make sure your proposal encounters minimal problems.

2 If you need to propose a lot of changes, submit multiple
proposals instead of one large one.
Start by proposing any new subfields, followed by new fields, then new abstract types, and
finally any new non-abstract types. By proposing changes in this order, you can correct any
issues in lower hierarchy items before those mistakes are repeated elsewhere. For example,
if a new subfield has an issue, you won’t have to correct that issue in every new field that
uses that subfield.

Another effective alternative is to propose your new fields and subfields in a spreadsheet
and request a review of this information. Sometimes the context of the collection of fields
by entity can make it easier to assess the extensions.

Now let’s turn our attention to how to propose different types
of ontology extensions.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a
subfield

1. Make sure a comparable subfield doesn’t already exist.
There are many subfields already defined in the ontology; you must make sure that what you’re
creating doesn’t already exist. This will require you to use your judgment. Anything you create
will need to be justified based on your use case. Reusing an existing subfield might be
suggested if what you propose seems superfluous, so be mindful of this as you attempt to
create new ones.

1. Determine the proper category for your subfield.
2. Name the subfield and provide a concise description for it.

For the name, avoid using uncommon acronyms or terminology that isn’t intuitive. Try to use
terminology already used in the ontology whenever possible.

1. Create a new Git branch and give the branch a descriptive name.
2. Update the subfields.yaml file with your new subfield.
3. Submit a pull request.

We’ll cover this step in more detail in just a bit.

Here the steps for creating a new
subfield.

NextBack Note: For more on subfields, check out Module 1, Lesson 3.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_3_Subfields.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example

Creating a subfield

Let’s say there’s an exhaust fan for a highly-specialized laboratory space. It’s depicted in the BMS points
list shown here.

The fan will run based on the detected presence of radon gas. It will run when the detected level of
radon is above a certain level (say 5 ppm).

Here are the steps for creating a subfield outlined in an example.

A few things to note about this example:

● The example is run from a machine which
has cloned the Digital Buildings Ontology
repo from GitHub.

● We will be making ontology updates to the
GitHub project, and this requires you to
interface with it. The example assumes
you’re familiar with the process for making
GitHub contributions.

Click Next to continue the example.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example (continued)

And running Ontology Explorer shows the
fields for this entity type:

Upon inspection of the ontology, we notice a few
things:

1. The subfield “radon” is not defined. It will need to be if
we intend to build a specific field for it.

2. The fields
zone_air_co2_concentration_sensor and
zone_air_co2_concentration_setpoint can
form the basis for the field we want to create, if we
replace “co2” with “radon”.

3. Since this will become a canonical type, we must
define the subfield, the fields which use that subfield,
the abstract type that uses those fields, and the
canonical type that uses that abstract type.

FAN_SS_CO2C:
 guid: “91bc028c-acbe-11ed-afa1-0242ac120002”
 description: “CO2 control fan.”
 is_canonical: true
 implements:
 - FAN
 - SS
 - CO2C

Creating a subfield (continued)

Click Next to continue the example.

Here are the steps for creating a subfield outlined in an example.

Back Next

An inspection of the HVAC/FAN types show
some similar fans, such as FAN_SS_CO2C,
which controls CO2 gas levels, but no such
device for dealing with radon.

https://github.com/google/digitalbuildings/blob/e2169b56e28c748208087c825a61464664afe54a/ontology/yaml/resources/HVAC/entity_types/FAN.yaml#L138

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example (continued)

For simplicity, we will create a pull request (PR) that defines all of these things together. If there are a lot of concepts to add, we would do that in several
separate PRs, one for subfields and fields, one for abstract types, and one for canonical types. It can be done all at once, but the review process will be much
longer.

Here are the updates:

protection: "Act of preventing damage to object."

radon: "A radioactive gas; chemical element 86. A noble gas (meaning it is generally non-reactive)."

rain: "Liquid water in the form of droplets that have condensed from atmospheric water vapor."

recovery: "Component or process used for the reclamation of heat."

red: "Red light fracture of ambient light"

Some notes:

1. We add “radon” as a descriptor, similar to “co2,” “co,” and “so2.” In this way we simply follow the precedent already set for gas concepts.
2. We add it in alphabetical order (between “protection” and “rain”).
3. We add a descriptive definition. Make sure the meaning is clear, and that its distinction from other terminology already defined is apparent.

Creating a subfield (continued)

Click Next to continue the example.

Here are the steps for creating a subfield outlined in an example.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a subfield (continued)

Example (continued)

Here are the steps for creating a subfield outlined in an example.

We have modified our local branch and can create a pull request as a result.

Using GitHub desktop, we can create the new
branch in the user interface:

And we can now see the changes that we made in a PR.

Let’s continue with the field definitions.

Back NextNote: For more on subfields, check out Module 1, Lesson 3.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_3_Subfields.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a field

Here are the steps for creating a new
field.

NextBack

1. Make sure a comparable field doesn’t already exist.
Be sure the field doesn’t already exist in a sub- or super-set of subfields.

1. Carefully consider the subfields you use.
For pointers on selecting the best subfields for your circumstances, check out model_hvac in the
GitHub repo.

1. Ensure your proposed field is built with the correct grammar.
When possible, base your proposed field on a similar field that has already been approved to help
create consistency.

1. Create a new Git branch and give the branch a descriptive name.
2. Update the proper .yaml file with your new field.

Depending on your field, choose either metadata_fields.yaml or telemetry_fields.yaml files.

1. Submit a pull request.
We’ll cover this step in more detail in just a bit.

1. Check the validator results to make sure that your field passes.

Note: For more on fields and the grammar used to construct them, check out Module 1, Lesson 4.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/model_hvac.md#fields
https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_4_Fields.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example

Checking our Github desktop instance, we can see the changes
reflected there as well, along with our initial changes.

Creating a numeric field
Here are the steps for creating a field outlined in an example.

Back NextNote: For more on fields, and the grammar used to construct them, check out Module 1, Lesson 4.

Having defined the subfield radon, we can now create
fields which utilize it.

Using what we explored earlier, our new fields must
conform to the correct field name syntax. We’ll model
them after these, which are already curated in the DBO:

- zone_air_co2_concentration_sensor
- zone_air_co2_concentration_setpoint

Here are our new fields, which we’ll add to the
telemetry_fields.yaml file:

- zone_air_radon_concentration_sensor
- zone_air_radon_concentration_setpoint

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_4_Fields.pdf
https://github.com/google/digitalbuildings/blob/e6a7a771ebd6e4e6669dc91e17d07ea28a0b0052/ontology/yaml/resources/fields/telemetry_fields.yaml#L407
https://github.com/google/digitalbuildings/blob/e6a7a771ebd6e4e6669dc91e17d07ea28a0b0052/ontology/yaml/resources/fields/telemetry_fields.yaml#L410

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a numeric field (continued)
Here are the steps for creating a numeric field outlined in an example.

Back NextNote: For more on fields, and the grammar used to construct them, check out Module 1, Lesson 4.

For numeric fields, users must define the default value range, i.e., the
minimum and maximum expected values for the field across all entities
that have the field. The range should be specified as a map containing
exactly two entries:

● the minimum, with a key of either flexible_min or fixed_min
● the maximum, with a key of either flexible_max or fixed_max

Each key should map to a double value, expressed in the SI unit for the field
(e.g., Kelvins for temperature fields).

Fixed means the range should never be changed and should always apply
across all entities that have the field (see the second example).

Flexible means the range may change over time or based on the entity. This
allows the range to be adjusted by the range calculation pipeline, which
periodically calculates new ranges for fields by using the interquartile-range
method on historical timeseries data.

A range may consist of two flexible bounds, two fixed bounds, or one
flexible bound and one fixed bound.

Example
The following range values are expressed in the standard (SI) unit for
concentration, parts per unit:

- zone_air_radon_concentration_sensor
 flexible_min: 0.00005
 flexible_max: 0.005
- zone_air_radon_concentration_setpoint
 flexible_min: 0.00005
 flexible_max: 0.005

Fixed ranges often apply to percentage fields, which may have a range
of 0 to 100:

- heating_air_damper_percentage_command:
 fixed_min: 0.0
 fixed_max: 100.0

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_4_Fields.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a multi-state or string field
Here are the steps for creating a multi-state or string field.

Back NextNote: For more on fields, and the grammar used to construct them, check out Module 1, Lesson 5.

Multi-state field
When adding a new multi-state field, first add any new states to
states.yaml. Multi-states should contain one of the following subfields:
alarm, mode, status, or command. In the fields .yaml file, the valid states
for the field should be listed below the field (visit Module 1, Lesson 5 for
more examples).

Example
- supply_water_valve_command:
 - OPEN
 - CLOSED

String field
When adding a new string field, just list the field by itself.

Example
- manufacturer_label
- model_label
- zone_use_label

Next, we’ll create the abstract type that uses the numeric fields we created.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_5_States_and_multistates.pdf
https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_5_States_and_multistates.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating an
abstract type
Here are the steps for creating a new
abstract type when new functionality is
required.

1. Make sure a comparable type doesn’t already exist.
2. Carefully build your type.

Focus on making the type as specific as possible. Make sure your type captures only the distinct
point of functionality you’re trying to capture. Abstract types are not merely collections of
random fields—the fields should have a specific meaning when combined together.

1. Ensure that your type includes the following information:
● A name that follows conventions.
● A description.
● A flag that it is abstract.
● A list of fields that the type uses, both required and optional.
● A list of any inherited types it may use.

1. Create a new Git branch and give the branch a descriptive name.
2. Go to the correct namespace for your new type and update the

proper .yaml file.
3. Submit a pull request.

We’ll cover this step in more detail in just a bit.

NextBack Note: You don’t need to provide an ID. The system will generate the ID if your type extension is accepted.
For more on entity types, and how they are constructed, check out Module 1, Lesson 6.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_6_Entity_types.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example

In the previous example, we explored the ontology and learned that
FAN_SS_CO2C does essentially what we want, but with CO2 rather
than radon. Therefore, we will want to create a similar abstract
type as CO2C, using it as a template and modifying its contents to
meet our new need.

Creating an abstract type
Here are the steps for creating an abstract type outlined in an example.

Click Next to continue the example.Back Next

We can see the definition in the ontology for CO2C under
HVAC/entity_types/ABSTRACT.yaml.

CO2C:
 guid: “91bc028c-acbe-11ed-afa1-0242ac120002”
 description: “Carbon dioxide control.”
 is_abstract: true
 implements:
 - OPERATIONAL
 uses:
 - zone_air_co2_concentration_sensor
 - zone_air_co2_concentration_setpoint

https://github.com/google/digitalbuildings/blob/e2169b56e28c748208087c825a61464664afe54a/ontology/yaml/resources/HVAC/entity_types/ABSTRACT.yaml#L254

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating an abstract type (continued)
Here are the steps for creating an abstract type outlined in an example.

Example (continued)

Copying the definition for CO2C, we simply replace “co2” with
“radon” and now have a valid definition. We provide only the
description, the fields, and any other necessary information
(such as “is_abstract: true”).

Checking our PR in the user interface, we can see it’s now there
as well.

Next, we will create the canonical type which
uses this new abstract concept and finalizes
the field coverage.

Back NextNote: You don’t need to provide an ID. The system will generate the ID if your type extension is accepted.
For more on entity types, and how they are constructed, check out Module 1, Lesson 6.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_6_Entity_types.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a
canonical type
Here are the steps for creating a new
canonical type.

1. Make sure a comparable type doesn’t already exist.
2. Carefully build your type.

If you’ll need a new subfield, field, or abstract type to create your new type, be sure to create
them first. Also, avoid applying fields directly to canonical types. Fields should be applied to
canonical types through the use of abstract types unless absolutely necessary.

1. Ensure that your type includes the following information:
● A name that follows conventions.

● A description.

● A flag that it is canonical.

● A list of what the type implements.

1. Create a new Git branch and give the branch a descriptive name.
2. Go to the correct namespace for your new type and update the

proper .yaml file.
3. Submit a pull request.

We’ll cover this step in more detail in just a bit.

NextBack Note: You don’t need to provide an ID. The system will generate the ID if your type extension is accepted.
For more on entity types, and how they are constructed, check out Module 1, Lesson 6.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_6_Entity_types.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example

Now we create the final type. We can copy FAN_SS_CO2C, which is
close to what we are expecting this type to be, and we replace the
CO2C abstract type with RNC, the new abstract type we just
created.

As discussed in previous lessons, the alarm is not necessary.
However, if you did want to include it, you could add this as a field
directly to the canonical type. We’ll examine how in the next slide.

FAN_SS_CO2C:
 guid: “91bc028c-acbe-11ed-afa1-0242ac120000”
 description: “CO2 control fan.”
 is_canonical: true
 implements:
 - FAN
 - SS
 - CO2C

FAN_SS_RNC:
 description: “Radon control fan.”
 is_canonical: true
 implements:
 - FAN
 - SS
 - RNC

Creating a canonical type
Here are the steps for creating a canonical type outlined in an example.

Click Next to continue the example.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example (continued)

To add an alarm, we first need to determine the field. Searching
telemetry_fields.yaml for the keyword “alarm,” we can find this
set of alarms:

fabric_protection_alarm
 - ACTIVE
 - INACTIVE
failed_alarm
 - ACTIVE
 - INACTIVE
filter_alarm
 - ACTIVE
 - INACTIVE
master_alarm
 - ACTIVE
 - INACTIVE

We see that the failed_alarm exists, so we could add that to
the FAN_SS_RNC definition in this way:

FAN_SS_RNC:
 description: “Radon control fan.”
 is_canonical: true
 implements:
 - FAN
 - SS
 - RNC
 opt_uses:
 - failed_alarm

We keep it as optional (opt_uses) because we don’t require it
in order to use this canonical type.

Creating a canonical type (continued)
Here are the steps for creating a canonical type outlined in an example.

Click Next to continue the example.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a canonical type (continued)
Here are the steps for creating a canonical type outlined in an example.

Example (continued)

Click Next to continue the example.

Proceeding forward with the example, we will omit the
alarm and add the updated canonical type to the PR.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a canonical type (continued)
Let’s confirm this update covers the new type. We can do this by exploring the modified local ontology again.

Example (continued)

Click Next to continue the example.

Running the Ontology Explorer on our local repo (where we’ve made the
modifications) we can explore and see that the new types are defined and
support what we want: RNC is now defined.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Creating a canonical type (continued)
Let’s confirm this update covers the new type. We can do this by exploring the modified local ontology again.

Example (continued)

Let’s check that the field set we have for the example exhaust fan now
matches the new type FAN_SS_RNC.

We see in match #1 that FAN_SS_RNC has a score of 100%. It’s a perfect match.

Now that we have confirmed the type does what
we want, we are ready to push the pull request.

Back NextNote: You don’t need to provide an ID. The system will generate the ID if your type extension is accepted.
For more on entity types, and how they are constructed, check out Module 1, Lesson 6.

https://github.com/google/digitalbuildings/blob/master/ontology/docs/learning/Module_1_Lesson_6_Entity_types.pdf

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Submitting a pull
request
Once you’ve finished adding your
proposed ontology extensions to their
proper .yaml files, it’s time to submit
your proposal as a Git pull request.

1. Commit your work to the branch you created.
Include a comment with a brief summary of what you’ve added.

2. Push your changes up to GitHub.
3. Submit a pull request (PR).

If your changes are in a fork, when creating a PR, make sure the “Allow edits by maintainers”
checkbox remains checked. This allows the Ontology Validator to automatically write GUIDs to
any new entity types.

4. Fix any issues the validator discovers, then repeat steps 1 and 2.
The Ontology Validator will automatically check your proposal for instances where it breaks rules
or could cause an incompatibility. It also automatically adds GUIDs to any new entity types. Your
proposal will not be reviewed until it can pass validator testing. We’ll look more closely at
validator testing in a moment.

NextBack Note: If you’re new to Git, check out their resources to learn how to perform the tasks discussed above.
https://git-scm.com/doc

https://git-scm.com/doc

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Submitting a pull request
After pushing the PR, we can see it in the web browser.

Example

Here you can see that the validator is running. You must inspect the
output once it has completed, looking for errors.

Keep in mind:

1. If this is your first time contributing to the project, the validator will
not run automatically. The DBO GitHub admin team will run it for you.

2. If this is your first time contributing to the project, you’ll also need to
submit a contributor license agreement in order for the PR to be
accepted. Follow the instructions on GitHub to sign this.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Validating your
extension proposal
Before your extension proposal can be
considered, it has to pass the Ontology
Validator.

NextBack

There are two ways to use the Ontology Validator.

1. Submit a pull request.
Whenever you submit a pull request, the Ontology Validator reviews your changes automatically
and reports back any issues it detects. You’ll need to check the validator outputs when you
submit a pull request (if you don’t, you will get a message from us that your work didn’t pass). If
this is your first pull request, the validator will need to be kicked off by an admin on the GitHub
repo.

2. Download the Ontology Validator and run it locally on your machine.
For more on how to use the Ontology Validator locally, check out ontology_validator.

Remember, your extension proposal won’t be considered until it can pass the validator, so you must
correct any issues it finds.

https://github.com/google/digitalbuildings/tree/master/tools/validators/ontology_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Validating your extension proposal
Here are the steps for validating your extension proposal outlined in an example.

Example

Let’s take a look at an example validator output. They appear to have passed, but let’s inspect to be sure.

Click Next to continue the example.

Note: Merging is blocked here because the PR has not been approved by someone on the DBO approval
team. Once the PR has been reviewed, you’ll either get feedback on how to alter your PR to conform more
closely to the intent of the ontology or it will get approval for merger. The merger will be handled by the
DBO team. You are only responsible for making sure the PR gets approved.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Validating your extension proposal (continued)
Here are the steps for validating your extension proposal outlined in an example.

Example (continued)

Click on any of the validator builds
and inspect the outputs.

After inspecting the ontology validator
outputs, we find that there are no errors, and
the warnings are not relevant to our pull
request.

The Github admin team can review the PR on
its merits and no further MSI work is needed
for extending the ontology.

Click Next to continue the example.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Validating your extension proposal (continued)
Let’s modify the example to show what it looks like to have an error.

Example (continued)

Imagine that we forgot to define
radon as a new subfield, but
created fields and types that
reference it.

Click Next to continue the example.

We can see that the merge is
now blocked because of the
validator failure.

Let’s resubmit the PR and see
what errors we get.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Validating your extension proposal (continued)
Let’s modify the example to show what it looks like to have an error.

Example (continued)

Let’s explore the error messages.

We see that radon is undefined, and that fields and types that use that field subsequently
fail. Once we add the definition for radon as a subfield the errors will go away (as shown
previously).

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Accepting
ontology
extensions
Once your extension proposal passes
validator testing, the Digital Buildings
team will examine your proposal.

The Digital Buildings team will examine your proposal with both an eye for
how it applies to the existing ontology and what impact it could have on
the ontology long-term.

The team might send you questions or proposed changes.
If so, addressing these issues as quickly as possible is the best way to ensure that your proposal will
be accepted in a timely fashion.

Once all questions and issues have been addressed, the team will make a
final decision on whether your proposed extensions should be included in
the ontology.

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

NextBack

Lesson 5

Knowledge check Let’s take a moment to reflect on what you’ve
learned so far.

● The next slides will have questions about the concepts that were
introduced in this lesson.

● Review each question and select the correct response.

● After this knowledge check, you’ll wrap up Lesson 5.

You won’t be able to move forward until the correct answer is selected.

Click Next when you’re ready to begin. NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Knowledge check 1

Next

You’re working on an ontology extension proposal that
introduces two new non-abstract types. Both types use
four new fields, along with several new subfields.

How should you go about submitting your extension
proposal?
Select the best answer from the options listed below.

Back

Submit all the new material at once, so reviewers can see the new items
with full context.

Start by submitting the new subfields. Once they are approved, submit the
new fields. After the fields are approved, submit the types.

Submit the fields and subfields together, then the types, so that all
non-canonical information stays together.

It depends on the context.

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Close… but not quite right! 🤔
Think back to the examples seen earlier in this lesson. Was it done in
one pull request or multiple pull request? What was the reasoning for
the approach that was taken?

Next

Knowledge check 1

Back

Submit all the new material at once, so reviewers can see the new items
with full context.

Start by submitting the new subfields. Once they are approved, submit the
new fields. After the fields are approved, submit the types.

You’re working on an ontology extension proposal that
introduces two new non-abstract types. Both types use
four new fields, along with several new subfields.

How should you go about submitting your extension
proposal?
Select the best answer from the options listed below.

Submit the fields and subfields together, then the types, so that all
non-canonical information stays together.

It depends on the context.

Try again

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Close… but not quite right! 🤔
Think back to the examples seen earlier in this lesson. Was it done in
one pull request or multiple pull request? What was the reasoning for
the approach that was taken?

Next

Knowledge check 1

Back

Submit all the new material at once, so reviewers can see the new items
with full context.

Start by submitting the new subfields. Once they are approved, submit the
new fields. After the fields are approved, submit the types.

You’re working on an ontology extension proposal that
introduces two new non-abstract types. Both types use
four new fields, along with several new subfields.

How should you go about submitting your extension
proposal?
Select the best answer from the options listed below.

Submit the fields and subfields together, then the types, so that all
non-canonical information stays together.

It depends on the context.

Try again

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Close… but not quite right! 🤔
Think back to the examples seen earlier in this lesson. Was it done in
one pull request or multiple pull request? What was the reasoning for
the approach that was taken?

Next

Knowledge check 1

Back

Submit all the new material at once, so reviewers can see the new items
with full context.

Start by submitting the new subfields. Once they are approved, submit the
new fields. After the fields are approved, submit the types.

You’re working on an ontology extension proposal that
introduces two new non-abstract types. Both types use
four new fields, along with several new subfields.

How should you go about submitting your extension
proposal?
Select the best answer from the options listed below.

Submit the fields and subfields together, then the types, so that all
non-canonical information stays together.

It depends on the context.

Try again

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

That’s right! 🎉
It depends on how many extensions you want to make. Sometimes it
will be perfectly fine to submit one PR containing all changes, such as
when you are proposing very small additions to a particular type.
Sometimes it may be more effective to do proposals in several
batches to prevent tedious rework. You will need to use your judgment
to determine what is most appropriate for your project.

Knowledge check 1

Submit all the new material at once, so reviewers can see the new items
with full context.

Start by submitting the new subfields. Once they are approved, submit the
new fields. After the fields are approved, submit the types.

You’re working on an ontology extension proposal that
introduces two new non-abstract types. Both types use
four new fields, along with several new subfields.

How should you go about submitting your extension
proposal?
Select the best answer from the options listed below.

Submit the fields and subfields together, then the types, so that all
non-canonical information stays together.

It depends on the context.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Knowledge check 2

Next

When should you check your extension
proposal with the validator tool?
Select the best answer from the options listed below.

Back

Automatically, after you submit your pull request

Locally, before you submit your pull request

Either locally or automatically

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Close… but not quite right! 🤔
Don’t forget that your pull request will be validated once you push to
GitHub.

NextBack

Knowledge check 2

Automatically, after you submit your pull request

Locally, before you submit your pull request

When should you check your extension
proposal with the validator tool?
Select the best answer from the options listed below.

Either locally or automatically

Try again

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Close… but not quite right! 🤔
Don’t forget that you can validate locally using the validator, too.

NextBack

Knowledge check 2

Automatically, after you submit your pull request

Locally, before you submit your pull request

When should you check your extension
proposal with the validator tool?
Select the best answer from the options listed below.

Either locally or automatically

Try again

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

That’s right! 🎉
The key thing to remember is that your extension proposal has to pass
the validator before it will be considered by the Digital Buildings team
for inclusion. Whether you test your work locally as you go using the
ontology validation tool, or wait until you submit your proposal for the
automatic validation test is up to you.

Knowledge check 2

Automatically, after you submit your pull request

Locally, before you submit your pull request

When should you check your extension
proposal with the validator tool?
Select the best answer from the options listed below.

Either locally or automatically

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Lesson 5 summary
Let’s review what you learned about:
● Ontology extensions

Now you should be able to:
● Submit a pull request to propose an ontology extension for:

○ Subfields
○ Fields
○ Abstract types
○ Non-abstract types

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

You completed Lesson 5!
Now’s a great time to take a quick
break before starting Lesson 6.

Ready for Lesson 6?

Press the Esc key on your keyboard
to exit presentation mode.

Let’s go!

Back

Have questions?
For future reference, keep these contacts and resources easily accessible for
technical and procedural questions.

Key contacts
● For project-related questions: Your project’s TPM or DBC
● For DBO questions: Trevor (tsodorff@) or Digital Buildings Discussions

Helpful resources
Bookmark these resources for future reference.

● Digital Buildings Project GitHub
Contains source code, tooling, and documentation for the DBO.

● Git Documentation
Provides tips and guidance on how to use Git.

● BOS for everyone site
Provides additional information about the BOS program.

https://docs.google.com/presentation/d/1Du49FuCwYTMMI9iYxGvRfumIdr-ksAGAE5IgrfWlEBw/present
https://docs.google.com/presentation/d/1Du49FuCwYTMMI9iYxGvRfumIdr-ksAGAE5IgrfWlEBw/present
mailto:tsodorff@google.com
https://github.com/google/digitalbuildings/discussions/categories/q-a
https://github.com/google/digitalbuildings
https://git-scm.com/doc
https://sites.google.com/corp/google.com/bos-external

