
Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Data modeling with the DBO

Module 2 | Lesson 7

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Before you get started
This learning module has interactive features and activities that enable a self-guided learning experience.
To help you get started, here are two tips for viewing and navigating through the content.

Navigate by clicking the buttons and links.
● For the best learning experience, using your keyboard or mouse

wheel to navigate is discouraged. However, this is your only option if
you’re viewing from GitHub.

● If you’re viewing this content outside of GitHub:

○ Click the Back or Next buttons to go backward or forward in the
deck. Moving forward, you’ll find them in the bottom corners of
every slide.

○ Click blue text to go to another slide in this deck or open a new
page in your browser.

View this content outside of GitHub.
● For the best learning experience, you’re encouraged to download a

copy so links and other interactive features will be enabled.

● To download a copy of this lesson, click Download in the top-right
corner of this content block.

● After downloading, open the file in your preferred PDF reader
application.

Ready to get started?

1 2

Let’s go!

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Workflow revisited
Here’s the recommended workflow for data modeling from Lesson 1.

In this lesson, you’ll walk through the sixth step of data modeling with the DBO.

Validate the instance and telemetry
As you construct the building config, it’s critical to ensure it
fully conforms to the DBO. You’ll need to validate the
instance and the mapped telemetry frequently before
completing it for your project.

6
Determine which
devices need to
be modeled

Determine which
data points are
required

Propose an
ontology
extension

Construct and
finalize the building
configuration file

Complete!Name each data
point using
the DBO

1 2 3 4 5 7

Back Next

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Lesson 7

Validate the instance
and telemetry

What you’ll learn about:
● The Instance Validator tool
● Instance validation
● Telemetry validation
● Validation feedback

By the end of this lesson, you’ll be able to:
● Run the Instance Validator with basic commands and additional

parameters.
● Generate a report file to share validation results with others.
● Identify the root cause of validation errors and correct them.
● Enable telemetry validation mode in the Instance Validator.

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Instance
Validator
The Instance Validator is a tool used to
validate building configuration files for
conformance with the DBO and to
validate end-to-end connectivity.

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Why validate a building config file?

Validation identifies problems in a building config.

We encourage incorporating iterative validation into your data modeling workflow
to identify and fix errors while you’re constructing the building config. This
approach allows you to address errors in smaller batches.

Waiting to validate until you’ve completed the entire building config file could
result in a large batch of errors (and a lot of tedious rework).

Instance Validator

Back Next

What’s the Instance Validator?
The Instance Validator is used to check if your building config is formatted
properly and the DBO was applied accurately. It ensures the building telemetry
sent to the cloud aligns with what you’ve represented in the concrete model. In
other words, it makes sure your building config actually works.

You’ll use the Instance Validator to validate the instance and telemetry of a
building config.

The Instance Validator is part of the Digital Buildings Project. Installation and
usage information can be found in instance_validator in the GitHub repo.

https://github.com/google/digitalbuildings
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Instance Validator (continued)

Back Next

What’s needed to run the Instance Validator?
Before attempting to validate the instance of a building config, you’ll need:

A building config file (complete or partially complete)

A version of Python installed on your machine (see python.org)

The Instance Validator tool installed on your machine (see instructions)

The Ontology Validator installed on your machine (see instructions)

The Instance Validator is also used for telemetry validation, which has a few additional requirements. These
will be covered later in this lesson. For now, let’s focus on instance validation with the Instance Validator.

https://www.python.org/downloads/
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator
https://github.com/google/digitalbuildings/tree/master/tools/validators/ontology_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Note: The Instance Validator is written in Python and takes as an argument the path pointing to the instance files.

Instance
validation with
the Instance
Validator
The Instance Validator can be run at any
time while you’re translating the building
config.

python instance_validator.py input --input

path/to/YOUR_BUILDING_CONFIG.yaml

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Instance validation with the Instance Validator
Basic command
You’ll run the Instance Validator from your machine’s terminal or command
prompt using the basic command:

python instance_validator.py input --input
path/to/YOUR_BUILDING_CONFIG.yaml

By default, this basic command will:

● Validate a single building config against the current version of the DBO.
● Write validation results in standard out.

It’s important that the --input parameter points to the correct path to the
building config file to be validated.

Additional parameters
The following parameters can also be used:

Multiple -- input path/to/YOUR_BUILDING_CONFIG.yaml
Validates multiple building configs at the same time. You can use as many
--input parameters for as many building configs you’d like to validate at
one time.

-- report-filename path/to/REPORT-NAME.txt

Provides the validation results in a separate report file. You’ll need to specify
your desired location and name for the report file. Report files are needed if
you want to share results with another person.

--modified-ontology-types
path/to/modified/ontology/types/folder

Validates the building config against a local version of a modified DBO. This is
handy if you’ve extended the ontology by adding new modeling concepts to
your local ontology but haven’t yet submitted them to the DBO or your PR is
not yet merged.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

NextBack

Lesson 7

Practice 1

Click Next when you’re ready to begin.

Let’s take a moment to apply what you’ve learned
so far.

● The next slide will give you an opportunity to use the Instance Validator to
validate a sample building configuration file.

● You’ll use the sample building config file named “demo.yaml” from the
Lesson 7 practice folder.

● If you haven’t done so already, install the Instance Validator on your
machine.

● After this practice activity, you’ll move on to instance validation feedback.

NextBack

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Steps

Practice 1

From your terminal or command prompt, run Instance Validator using the
following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml

Make sure the --input parameter points to the correct path to the sample
building config file.

When you’re ready, click Next to check your work.Back

Let’s say you have a building configuration file that
needs to be validated.

Use the Instance Validator to validate the instance of
the building config “demo.yaml”.
Go to the Lesson 7 practice folder to download the file “demo.yaml” to your
machine. Then, follow the steps displayed on the right.

Next

Note: In order to validate for this practice activity, you must have the Instance Validator already installed on
your machine.

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Keep this file easily accessible for the next activity.
Click Next to move on to the next practice activity.

Practice 1
Check your work! 󰞹
The validation results should have been successful.
Did you end up with this success message?

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

NextBack

Lesson 7

Practice 2

Click Next when you’re ready to begin.

Let’s continue to apply what you’ve learned so far.

● The next slide will give you an opportunity to use the Instance Validator to
generate a report file of validation results.

● You’ll continue to use the sample building config file named “demo.yaml”
from the Lesson 7 practice folder.

● If you haven’t done so already, install the Instance Validator on your
machine.

● After this practice activity, you’ll move on to instance validation feedback.

NextBack

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Steps
From your terminal or command prompt, run Instance Validator using the
following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml --report-filename
path/to/REPORT-NAME.txt

Make sure the --input parameter points to the correct path to the sample
building config file.

Also make sure the --report-filename parameter specifies your desired
location and name for the report file.

Practice 2

When you’re ready, click Next to check your work.Back

Let’s say you need to share the validation results with
someone else on your team.

Use the Instance Validator to generate a report file
for the building config “demo.yaml”.
Go to the Lesson 7 practice folder to download the file “demo.yaml” to your
machine. Then, follow the steps displayed on the right.

Next

Note: In order to validate for this practice activity, you must have the Instance Validator already installed on
your machine.

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Click Next to move on to instance validation feedback.Click Next to move on to instance validation feedback.

report.txt
Here’s a look of the opened the report file showing the validation results..

Practice 2
Check your work! 󰠅
A new report file should have been generated and can be inspected for results.
Is it in your specified location? Does it have the file name you specified?

If you check your terminal or command prompt, you’ll see that the validation results didn’t print to standard out. You’ll need to open the report file to
see if the validation was successful or if it failed.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Instance validation feedback
The Instance Validator will show whether the validation is successful or resulted in an error.

Success message
Here’s an example of an instance validation that resulted in a
success. This is what you’re striving for after each validation
iteration and upon completion of a building config file.

Error message
Here’s an example of an instance validation that resulted in an
error. If this occurs, you’ll need to identify the root cause of the
error, fix it, and re-run validation to confirm the error is resolved.

Note: In the next set of practice activities, we’ll look at common validation errors and tips for fixing them.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

NextBack

Lesson 7

Practice 3

Click Next when you’re ready to begin.

Let’s take a moment to apply what you’ve learned
so far.

● The next slides will give you a few opportunities to use the Instance
Validator to validate the sample building configuration files from the
Lesson 7 practice folder.

● If you haven’t done so already, install the Instance Validator on your
machine.

● After this practice activity, you’ll move on to complete another activity to
continue practicing with the Instance Validator.

NextBack

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Next

Practice 3
Steps
From your terminal or command prompt, run Instance Validator using the
following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml

Make sure the --input parameter points to the correct path to the sample
building config file.

Back

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Note: In order to validate for this practice activity, you must have the Instance Validator already installed on your machine.

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
The validation of the building config “demo_bad_connection.yaml”
should have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Terminal

Practice 3

demo_bad_connection.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
(continued)
Here’s the mistake and how to fix it.

Error
Orphan connection to: efg-hij-klm

Root cause
The entity efg-hij-klm isn’t defined in the building config.

Solution
Fix the affected connection. Either replace the zone with another entity
defined in the building config or define a new entity for the zone.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_bad_connection.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Terminal

Check your work! 󰠅
The validation of the building config “demo_bad_field.yaml” should have
resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Practice 3

demo_bad_field.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
(continued)
Here’s the mistake and how to fix it.

Error
1. Field banana_sensor is not defined on the type
2. Required field /run_command is missing from translation

Root cause
1. banana_sensor isn’t a valid field in the Digital Buildings Ontology.
2. A translation needs a required field added to it.

Solution
1. Remove the field banana_sensor or replace it with a valid field.
2. Add the specified required field run_command to the affected translation.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_bad_field.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
The validation of the building config “demo_bad_indent.yaml” should
have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Terminal

Practice 3

demo_bad_indent.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
(continued)
Here’s the mistake and how to fix it.

Error
The validation message doesn’t specify the error, but it does tell you exactly
where the error is located: in "<unicode string>", line 7 column 7:.

Root cause
Check the building config file to find the root cause. You should see the indent
is incorrect due to extra spaces next to cloud_device_id: 1234567.

Solution
Delete the extra spaces before cloud_device_id: 1234567.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_bad_indent.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Terminal

Check your work! 󰠅
The validation of the building config “demo_bad_state.yaml“ should have
resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Practice 3

demo_bad_state.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
(continued)
Here’s the mistake and how to fix it.

Error
Field /run_command has an invalid state: BANANA (expected
ON, OFF)

Root cause
BANANA isn’t a valid state in the Digital Buildings Ontology.

Solution
Correct the states defined for the field run_command. BANANA should be
replaced with the states ON and OFF.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_bad_state.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Terminal

Check your work! 󰞹
The validation of the building config “demo_missing_building.yaml“
should have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Practice 3

demo_missing_building.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
(continued)
Here’s the mistake and how to fix it.

Error
SyntaxError: Building Config must contain an entity with
a building type.

Root cause
A building isn’t defined in the building config file.

Solution
Define an entity for the building.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_missing_building.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
The validation of the building config “demo_missing_keys.yaml“ should
have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Terminal

Practice 3

demo_missing_keys.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
(continued)
Here’s the mistake and how to fix it.

Error
required key(s) 'type' not found

Root cause
The entity def-234-fss doesn't have an entity type.

Solution
Add an entity type to the entity def-234-fss.

Wait!
There’s actually another error present in this building config. Apply the above
solution, and then try validating the file again. Click Next for info about the
second error.

Practice 3

demo_missing_keys.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
(continued)
After fixing the first error and validating the building config again, you’ll
see another error message indicating cloud_device_id is missing.

Why? Because the Instance Validator will fail on the first error (or
common group of errors) it spots. This is why it’s important to
troubleshoot dynamically and validate in small batches to avoid a lot of
hidden errors in subsequent validation runs.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_missing_keys.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_building.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
The validation of the building config “demo_missing_type.yaml“ should
have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Terminal

Practice 3

demo_missing_type.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

NextBack

demo_missing_building.yaml

demo_missing_keys.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰞹
(continued)
Here’s the mistake and how to fix it.

Error
required key(s) 'type' not found

Root cause
The entity def-234-fss doesn't have an entity type.

Solution
Add an entity type to the entity def-234-fss.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_missing_type.yaml

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Back Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml demo_missing_value.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Terminal

Check your work! 󰠅
The validation of the building config “demo_missing_value.yaml“ should
have resulted in an error. Did you end up with this error message?
Click Next for info about the error, root cause, and solution.

Practice 3

demo_missing_value.yaml

Back

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Check your work! 󰠅
(continued)
Here’s the mistake and how to fix it.

Error
Sometimes, it isn’t entirely clear from the validation message what or where
exactly the error is. In these cases, it’s up to you and your knowledge of the
building configuration format to identify and correct the error.

Root cause
Check the building config file to find the root cause. You should see there’s a
missing value for the key present_value.

Solution
Qualify the corresponding point from the JSON payload.

Take your time and try validating another sample building config.
When you’re ready, click Next to move on to Practice 4.

Practice 3

demo_missing_value.yaml

Back

Let’s say you have a building config that needs to be
validated, but it has a mistake. Don’t worry, it’s inevitable!

Use the Instance Validator to validate at least two
building config files with errors.
Go to the Lesson 7 practice folder to download two or more files labeled “bad”
or “missing”. Then, follow the steps displayed on the right.

When you’re ready, select a building config file you validated to check your
work.

Next

demo_missing_building.yaml

demo_missing_keys.yaml

demo_missing_type.yaml

demo_bad_connection.yaml

demo_bad_field.yaml

demo_bad_indent.yaml

demo_bad_state.yaml

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

NextBack

Lesson 7

Practice 4

Click Next when you’re ready to begin.

Let’s take a moment to reflect on what you’ve learned
so far.

● The next slide will give you an opportunity to use the Instance Validator to
validate a sample building configuration file and troubleshoot its error.

● You’ll use the sample building config file named “demo_test.yaml” from
the Lesson 7 practice folder.

● If you haven’t done so already, install the Instance Validator on your
machine.

● After this practice activity, you’ll move on to telemetry validation.

NextBack

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Steps
From your terminal or command prompt, run Instance Validator using the
following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml

Make sure the --input parameter points to the correct path to the sample
building config file.

Practice 4

When you’re ready, click Next to review results and identify errors.Back

Let’s say you have a building configuration file that
needs to be validated.

Use the Instance Validator to validate the instance of
the building config “demo_test.yaml”.
Go to the Lesson 7 practice folder to download the file “demo_test.yaml” to
your machine. Then, follow the steps displayed on the right.

Next

Note: In order to validate for this practice activity, you must have the Instance Validator already installed on
your machine.

https://github.com/google/digitalbuildings/tree/master/ontology/docs/learning/practice
https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Terminal

Practice 4
Uh oh! There’s an error. 🤔
Here are the validation results. Do you see the error message?

This building config needs to be corrected. You’ll need to identify
the root cause of the error and fix it in the building config file.

Find and fix the error in the building config
“demo_test.yaml”. Then, validate it again to
confirm the error is fixed.
Use your text editor to modify the file “demo_test.yaml” and re-validate it
using the Instance Validator.

Hint: The error message is: Field supply_fan_speed_frequency_sensor is not defined on
the type

When you’re ready, click Next to review results and check your work.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

What was the error?

The original building config file had a translated field in the entity
def-234-fss that isn’t associated with the entity type
HVAC/FAN_SS. The error message specified the problematic field is
supply_fan_frequency_sensor.

How should it have been fixed?

You would’ve needed to remove the problematic field from the
affected translation. If this wasn’t immediately apparent to you, a
quick run of the entity type HVAC/FAN_SS through the Ontology
Explorer would help you confirm that
supply_fan_frequency_sensor is absent from its associated
fields.

Terminal

Practice 4
Check your work! 󰞹
After fixing the error, the building config “demo_test.yaml” should
have been successfully validated. Did you get a success
message?

Click Next to move on to telemetry validation.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Telemetry
validation with
the Instance
Validator
The Instance Validator is also used for
telemetry validation of building configs
by enabling “telemetry validation mode”.

Note: By default, the Instance Validator runs with telemetry validation mode disabled.

python instance_validator.py --input

path/to/YOUR_BUILDING_CONFIG.yaml --

subscription

projects/google.com:your-project/subscriptions/y

our-subscription -- service-account KEY.json

NextBack

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Telemetry validation with the Instance Validator
Parameters to enable telemetry validation mode
To enable the mode, run instance_validator.py with the following parameters:

-- subscription
Points to a fully-qualified path to a Google Cloud Pub/Sub subscription (e.g., projects/google.com:your-project/subscriptions/your-subscription).

-- service-account
Points to a path to a service account key JSON file corresponding to an account that has permission to pull messages from the Pub/Sub.

Failure to provide both of these parameters will result in early termination of the validator and an error message.

Additional parameters
The following parameters can also be used when telemetry validation mode is enabled:

-- timeout
Specifies a timeout duration in seconds for the telemetry validation to run. The default is 600 seconds or 10 minutes.

-- report-filename
Provides the validation report in a separate report file.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Telemetry validation with the Instance Validator

Click Next to learn how to get a subscription parameter.

What’s telemetry validation?
Telemetry validation listens for telemetry messages to validate them against the instance configuration. We recommend performing telemetry validation before
completing your building configuration file.

What’s needed to perform telemetry validation with the Instance Validator?
In addition to the basic requirements to run the Instance Validator described earlier in this lesson, you’ll need the following for telemetry validation:

● A service account key JSON file (point to this file when running telemetry validation)
● A subscription parameter (a path to a Google Cloud subscription)

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 2 3 4 5

Subscription parameter
Here’s how to get a subscription parameter for telemetry validation.

First, go to Google Cloud
Console and select your
projects.

AB-CDE-FGHI

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 2 3 4 5

Subscription parameter
Here’s how to get a subscription parameter for telemetry validation.

project

project

Navigate to your project.

your - project

project

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 4 52 3

Subscription parameter
Here’s how to get a subscription parameter for telemetry validation.

Navigate to the Pub/Sub portal
and select Subscriptions.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 4 52 3

Subscription parameter
Here’s how to get a subscription parameter for telemetry validation.

Filter on the Subscription ID for
your project.

projects/google.com:your-project/topics/your-topicyour - subscription

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 42 3 5

Subscription parameter
Here’s how to get a subscription parameter for telemetry validation.

Select your project to open the
Subscription details page.

Here, you’ll find the path that forms
your subscription parameter:

projects/google.com:your-project/subscriptions/your-subscription

projects/google.com:your-project/subscriptions/your-s
ubscription

projects/google.com:your-project/topics/your-topic

your - subscription

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 2 3

Telemetry validation walkthrough
Let’s see how you’d validate the telemetry of a building config file.

Note: You won’t be able to practice telemetry validation now. Keep this walkthrough handy to use as
a reference when you need to validate telemetry in the near future for your project.

Terminal

First, validate the instance before validating the
telemetry.
Run Instance Validator using the following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml

Make sure the --input parameter points to the correct path to the
sample building config file.

With the instance validated, you can proceed to perform telemetry
validation.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Then, proceed with telemetry validation.
Run Instance Validator with telemetry validation mode enabled using the
following command:

python instance_validator.py --input
path/to/YOUR_BUILDING_CONFIG.yaml -- subscription
projects/google.com:your-project/subscriptions/your-su
bscription -- service-account KEY.json

Make sure the --input parameter points to the correct path to the
sample building config file.

Make sure the -- subscription parameter points to a fully-qualified
path to a Google Cloud Pub/Sub subscription.

Make sure the -- service-account parameter points to the correct
path to the service account key file.

1 2 3

Telemetry validation walkthrough
Let’s see how you’d validate the telemetry of a building config file.

Note: You won’t be able to practice telemetry validation now. Keep this walkthrough handy to use as
a reference when you need to validate telemetry in the near future for your project.

projects/google.com:your-project/subscription
s/your-subscription

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

1 2 3

projects/google.com:your-project/subscriptions/your-subscription

Telemetry validation walkthrough
Let’s see how you’d validate the telemetry of a building config file.

Note: You won’t be able to practice telemetry validation now. Keep this walkthrough handy to use as
a reference when you need to validate telemetry in the near future for your project.

Finally, review the telemetry validation results.
Here’s what it looks like after validation. This was a successful validation
with no errors, which is indicated by the blank Telemetry validation
errors: section.

There were some warnings generated, which are listed in the Telemetry
validation warnings: section. These indicate the validated building
config doesn’t cover every device being published to the topic. This may
be intentional, because the building config may be partially complete.
However, by the end of the project, it’s expected that everything published
to the topic is described in the building config, resulting in no warnings
after telemetry validation.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

projects/google.com:your-project/subscriptions/your-subscription

Telemetry validation feedback
After validating the telemetry, the validation results will list errors and warnings for you to address.

Telemetry validation errors
An error is a problem you can’t ignore. Errors indicate the telemetry
validation failed for some reason, and it must be addressed before
validation can continue. All errors must be addressed. Some examples of
errors include syntax errors, missing connections, and undefined fields.

Telemetry validation warnings
A warning is a potential problem that should be assessed. Warnings don’t
indicate a failed validation, so they don’t need to be addressed
immediately.

Warnings depend on context, so pay attention to them but don’t feel
compelled to address them if the current context deems them irrelevant.

For example:
● Ignore warnings if you intend to validate an incomplete building config

to test translations you’re defining for a few devices.
● Address warnings if you intend to validate a finalized building config.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

What happens when the path to the
payload isn’t qualified properly?
As you know by now, we use the . in building
configs to delimit layers in the UDMI-formatted
JSON payload. This format qualifies the path in the
payload that contains the value of a field.

Example
Here’s a sample payload showing
the standard UDMI format for
each data point.

{
 "timestamp":
 "2022-02-08T16:16:52.000Z",
 "points":
 {
 "co_avg_ppb":
 {
 "present_value": 1024
 },
 "rht_temp_celsius":
 {
 "present_value": 22.31
 },

Here’s a building config that attempts to translate the point co_avg_ppb to the field
thirtysecondrolling_average_zone_air_co_concentration_sensor.

Do you see the error?

12345678:
 code: ST-0021
 cloud_device_id: "2769931014860840"
 translation:
 thirtysecondrolling_average_zone_air_co_concentration_sensor:
 present_value: co_avg_ppb.present_value
 units:
 key: points.co_avg_ppb.units
 values:
 parts_per_billion: parts_per_billion

Current path:
present_value: co_avg_ppb.present_value

Valid path:
present_value: points.co_avg_ppb.present_value

Payload
points
 raw_field_name
 present_value

Building config format
points.raw_field_name.present_value

Telemetry validation feedback (continued)
Let’s explore a common telemetry validation error: an invalid path to the payload.

Click Next to continue this example.Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Example (continued)
After validating the telemetry with the Instance Validator, we see that
it’s unable to confirm the field is present in the payload.

Here’s the mistake and how to fix it
Error
Entity [ST-0021], point [co_avg_ppb.present_value]:
Field missing from telemetry message

Root cause
There is an invalid path to the payload in the building config:
present_value: co_avg_ppb.present_value

Solution
You’ll need to define a valid path in the building config:
present_value: points.co_avg_ppb.present_value

Telemetry validation feedback (continued)
Let’s explore a common telemetry validation error: an invalid path to the payload.

projects/google.com:your-project/subscriptions/your-subscription

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Repeat as needed
Instance and telemetry validation should be performed iteratively while you’re constructing a building config file and when
you’re finalizing a building config.
Click on each item to review the commands and parameters.

Back Next

Run the Instance Validator

Additional parameters

Enable telemetry validation

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Command to run the Instance Validator
From your terminal or command prompt, use the following command:
python instance_validator.py --input path/to/YOUR_BUILDING_CONFIG.yaml

Parameters
● --input should point to the correct path to the building config file.

Repeat as needed
Instance and telemetry validation should be performed iteratively while you’re constructing a building config file and when
you’re finalizing a building config.
Click on each item to review the commands and parameters.

Run the Instance Validator

Back Next

Additional parameters

Enable telemetry validation

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Command to enable telemetry validation
From your terminal or command prompt, use the following command:
python instance_validator.py --input path/to/YOUR_BUILDING_CONFIG.yaml -- subscription
projects/google.com:your-project/subscriptions/your-subscription -- service-account
KEY.json

Parameters
● --input should point to the correct path to the building config file.

● -- subscription should point to a fully-qualified path to a Google Cloud Pub/Sub subscription.
Example: projects/google.com:your-project/subscriptions/your-subscription

● -- service-account should point to the correct path to the service account key JSON file.

Repeat as needed
Instance and telemetry validation should be performed iteratively while you’re constructing a building config file and when
you’re finalizing a building config.
Click on each item to review the commands and parameters.

Enable telemetry validation

Back Next

Run the Instance Validator

Additional parameters

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Repeat as needed
Instance and telemetry validation should be performed iteratively while you’re constructing a building config file and when
you’re finalizing a building config.
Click on each item to review the commands and parameters.

Additional parameters

Multiple -- input
path/to/YOUR_BUILDING_CONFIG.yaml
Validates multiple building configs at the same time.
You can use as many --input parameters for as
many building configs you’d like to validate at one time.

-- report-filename
path/to/REPORT-NAME.txt
Provides the validation results in a separate report file.
You’ll need to specify your desired location and name
for the report file. Report files are needed if you want to
share results with another person.

--modified-ontology-types
path/to/modified/ontology/types/folder
Validates the building config against a local version of
a modified DBO. This is handy if you’ve extended the
ontology by adding new modeling concepts to your
local ontology but haven’t yet submitted them to the
DBO or your PR is not yet merged.

-- timeout
With telemetry mode enabled, specifies a timeout
duration in seconds for the telemetry validation to run.

Additional parameters

Back Next

Run the Instance Validator

Enable telemetry validation

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Lesson 7 summary
Let’s review what you learned about:
● The Instance Validator tool
● Instance validation
● Telemetry validation
● Validation feedback

Now you should be able to:
● Run the Instance Validator with basic commands and additional parameters.
● Generate a report file to share validation results with others.
● Identify the root cause of validation errors and correct them.
● Enable telemetry validation mode in the Instance Validator.

Back Next

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

Workflow revisited

Complete!
After you’ve validated the building config file with the
Instance Validator, consider it complete and ready to move
forward in your project.

7
Determine which
devices need to
be modeled

Determine which
data points are
required

Propose an
ontology
extension

Construct and
finalize the building
configuration file

Validate the
instance and
telemetry

Name each data
point using
the DBO

1 2 3 4 5 6

Back Next

Here’s one last look at the recommended workflow for data modeling from Lesson 1.

Remember, data modeling with the DBO heavily depends on your ability to accurately identify the equipment that needs to be modeled and how that equipment can be
described using the DBO. Use our recommended workflow along with the resources in the Digital Buildings Project GitHub repo to guide your efforts.

#
#
https://github.com/google/digitalbuildings

Copyright 2022 Google, LLC. Licensed under the Apache License, Version 2.0

You completed Lesson 7!
This also completes Module 2:
Data modeling with the DBO.

Helpful resources
For future reference, keep these resources easily accessible for technical and
procedural questions.

● Instance Validator
Used to validate a building config file to ensure it conforms to the DBO.

● Ontology Explorer
Used to ask basic questions of what’s curated within the DBO.

● Digital Buildings Project GitHub
Contains source code, tooling, and documentation for the DBO.

Back

https://github.com/google/digitalbuildings/tree/master/tools/validators/instance_validator
https://github.com/google/digitalbuildings/tree/master/tools/explorer
https://github.com/google/digitalbuildings

