001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.base.Function;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.math.IntMath;
029import com.google.common.primitives.Ints;
030import java.util.AbstractCollection;
031import java.util.ArrayList;
032import java.util.Arrays;
033import java.util.Collection;
034import java.util.Collections;
035import java.util.Comparator;
036import java.util.Iterator;
037import java.util.List;
038import java.util.Spliterator;
039import java.util.function.Consumer;
040import javax.annotation.Nullable;
041
042/**
043 * Provides static methods for working with {@code Collection} instances.
044 *
045 * <p><b>Java 8 users:</b> several common uses for this class are now more comprehensively addressed
046 * by the new {@link java.util.stream.Stream} library. Read the method documentation below for
047 * comparisons. These methods are not being deprecated, but we gently encourage you to migrate to
048 * streams.
049 *
050 * @author Chris Povirk
051 * @author Mike Bostock
052 * @author Jared Levy
053 * @since 2.0
054 */
055@GwtCompatible
056public final class Collections2 {
057  private Collections2() {}
058
059  /**
060   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
061   * returned collection is a live view of {@code unfiltered}; changes to one
062   * affect the other.
063   *
064   * <p>The resulting collection's iterator does not support {@code remove()},
065   * but all other collection methods are supported. When given an element that
066   * doesn't satisfy the predicate, the collection's {@code add()} and {@code
067   * addAll()} methods throw an {@link IllegalArgumentException}. When methods
068   * such as {@code removeAll()} and {@code clear()} are called on the filtered
069   * collection, only elements that satisfy the filter will be removed from the
070   * underlying collection.
071   *
072   * <p>The returned collection isn't threadsafe or serializable, even if
073   * {@code unfiltered} is.
074   *
075   * <p>Many of the filtered collection's methods, such as {@code size()},
076   * iterate across every element in the underlying collection and determine
077   * which elements satisfy the filter. When a live view is <i>not</i> needed,
078   * it may be faster to copy {@code Iterables.filter(unfiltered, predicate)}
079   * and use the copy.
080   *
081   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
082   * as documented at {@link Predicate#apply}. Do not provide a predicate such
083   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
084   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
085   * functionality.)
086   *
087   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
088   */
089  // TODO(kevinb): how can we omit that Iterables link when building gwt
090  // javadoc?
091  public static <E> Collection<E> filter(Collection<E> unfiltered, Predicate<? super E> predicate) {
092    if (unfiltered instanceof FilteredCollection) {
093      // Support clear(), removeAll(), and retainAll() when filtering a filtered
094      // collection.
095      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
096    }
097
098    return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate));
099  }
100
101  /**
102   * Delegates to {@link Collection#contains}. Returns {@code false} if the
103   * {@code contains} method throws a {@code ClassCastException} or
104   * {@code NullPointerException}.
105   */
106  static boolean safeContains(Collection<?> collection, @Nullable Object object) {
107    checkNotNull(collection);
108    try {
109      return collection.contains(object);
110    } catch (ClassCastException | NullPointerException e) {
111      return false;
112    }
113  }
114
115  /**
116   * Delegates to {@link Collection#remove}. Returns {@code false} if the
117   * {@code remove} method throws a {@code ClassCastException} or
118   * {@code NullPointerException}.
119   */
120  static boolean safeRemove(Collection<?> collection, @Nullable Object object) {
121    checkNotNull(collection);
122    try {
123      return collection.remove(object);
124    } catch (ClassCastException | NullPointerException e) {
125      return false;
126    }
127  }
128
129  static class FilteredCollection<E> extends AbstractCollection<E> {
130    final Collection<E> unfiltered;
131    final Predicate<? super E> predicate;
132
133    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
134      this.unfiltered = unfiltered;
135      this.predicate = predicate;
136    }
137
138    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
139      return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate));
140      // .<E> above needed to compile in JDK 5
141    }
142
143    @Override
144    public boolean add(E element) {
145      checkArgument(predicate.apply(element));
146      return unfiltered.add(element);
147    }
148
149    @Override
150    public boolean addAll(Collection<? extends E> collection) {
151      for (E element : collection) {
152        checkArgument(predicate.apply(element));
153      }
154      return unfiltered.addAll(collection);
155    }
156
157    @Override
158    public void clear() {
159      Iterables.removeIf(unfiltered, predicate);
160    }
161
162    @Override
163    public boolean contains(@Nullable Object element) {
164      if (safeContains(unfiltered, element)) {
165        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
166        E e = (E) element;
167        return predicate.apply(e);
168      }
169      return false;
170    }
171
172    @Override
173    public boolean containsAll(Collection<?> collection) {
174      return containsAllImpl(this, collection);
175    }
176
177    @Override
178    public boolean isEmpty() {
179      return !Iterables.any(unfiltered, predicate);
180    }
181
182    @Override
183    public Iterator<E> iterator() {
184      return Iterators.filter(unfiltered.iterator(), predicate);
185    }
186
187    @Override
188    public Spliterator<E> spliterator() {
189      return CollectSpliterators.filter(unfiltered.spliterator(), predicate);
190    }
191
192    @Override
193    public void forEach(Consumer<? super E> action) {
194      checkNotNull(action);
195      unfiltered.forEach(
196          (E e) -> {
197            if (predicate.test(e)) {
198              action.accept(e);
199            }
200          });
201    }
202
203    @Override
204    public boolean remove(Object element) {
205      return contains(element) && unfiltered.remove(element);
206    }
207
208    @Override
209    public boolean removeAll(final Collection<?> collection) {
210      return removeIf(collection::contains);
211    }
212
213    @Override
214    public boolean retainAll(final Collection<?> collection) {
215      return removeIf(element -> !collection.contains(element));
216    }
217
218    @Override
219    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
220      checkNotNull(filter);
221      return unfiltered.removeIf(element -> predicate.apply(element) && filter.test(element));
222    }
223
224    @Override
225    public int size() {
226      int size = 0;
227      for (E e : unfiltered) {
228        if (predicate.apply(e)) {
229          size++;
230        }
231      }
232      return size;
233    }
234
235    @Override
236    public Object[] toArray() {
237      // creating an ArrayList so filtering happens once
238      return Lists.newArrayList(iterator()).toArray();
239    }
240
241    @Override
242    public <T> T[] toArray(T[] array) {
243      return Lists.newArrayList(iterator()).toArray(array);
244    }
245  }
246
247  /**
248   * Returns a collection that applies {@code function} to each element of
249   * {@code fromCollection}. The returned collection is a live view of {@code
250   * fromCollection}; changes to one affect the other.
251   *
252   * <p>The returned collection's {@code add()} and {@code addAll()} methods
253   * throw an {@link UnsupportedOperationException}. All other collection
254   * methods are supported, as long as {@code fromCollection} supports them.
255   *
256   * <p>The returned collection isn't threadsafe or serializable, even if
257   * {@code fromCollection} is.
258   *
259   * <p>When a live view is <i>not</i> needed, it may be faster to copy the
260   * transformed collection and use the copy.
261   *
262   * <p>If the input {@code Collection} is known to be a {@code List}, consider
263   * {@link Lists#transform}. If only an {@code Iterable} is available, use
264   * {@link Iterables#transform}.
265   *
266   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
267   */
268  public static <F, T> Collection<T> transform(
269      Collection<F> fromCollection, Function<? super F, T> function) {
270    return new TransformedCollection<>(fromCollection, function);
271  }
272
273  static class TransformedCollection<F, T> extends AbstractCollection<T> {
274    final Collection<F> fromCollection;
275    final Function<? super F, ? extends T> function;
276
277    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
278      this.fromCollection = checkNotNull(fromCollection);
279      this.function = checkNotNull(function);
280    }
281
282    @Override
283    public void clear() {
284      fromCollection.clear();
285    }
286
287    @Override
288    public boolean isEmpty() {
289      return fromCollection.isEmpty();
290    }
291
292    @Override
293    public Iterator<T> iterator() {
294      return Iterators.transform(fromCollection.iterator(), function);
295    }
296
297    @Override
298    public Spliterator<T> spliterator() {
299      return CollectSpliterators.map(fromCollection.spliterator(), function);
300    }
301
302    @Override
303    public void forEach(Consumer<? super T> action) {
304      checkNotNull(action);
305      fromCollection.forEach((F f) -> action.accept(function.apply(f)));
306    }
307
308    @Override
309    public boolean removeIf(java.util.function.Predicate<? super T> filter) {
310      checkNotNull(filter);
311      return fromCollection.removeIf(element -> filter.test(function.apply(element)));
312    }
313
314    @Override
315    public int size() {
316      return fromCollection.size();
317    }
318  }
319
320  /**
321   * Returns {@code true} if the collection {@code self} contains all of the
322   * elements in the collection {@code c}.
323   *
324   * <p>This method iterates over the specified collection {@code c}, checking
325   * each element returned by the iterator in turn to see if it is contained in
326   * the specified collection {@code self}. If all elements are so contained,
327   * {@code true} is returned, otherwise {@code false}.
328   *
329   * @param self a collection which might contain all elements in {@code c}
330   * @param c a collection whose elements might be contained by {@code self}
331   */
332  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
333    for (Object o : c) {
334      if (!self.contains(o)) {
335        return false;
336      }
337    }
338    return true;
339  }
340
341  /**
342   * An implementation of {@link Collection#toString()}.
343   */
344  static String toStringImpl(final Collection<?> collection) {
345    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
346    boolean first = true;
347    for (Object o : collection) {
348      if (!first) {
349        sb.append(", ");
350      }
351      first = false;
352      if (o == collection) {
353        sb.append("(this Collection)");
354      } else {
355        sb.append(o);
356      }
357    }
358    return sb.append(']').toString();
359  }
360
361  /**
362   * Returns best-effort-sized StringBuilder based on the given collection size.
363   */
364  static StringBuilder newStringBuilderForCollection(int size) {
365    checkNonnegative(size, "size");
366    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
367  }
368
369  /**
370   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
371   */
372  static <T> Collection<T> cast(Iterable<T> iterable) {
373    return (Collection<T>) iterable;
374  }
375
376  /**
377   * Returns a {@link Collection} of all the permutations of the specified
378   * {@link Iterable}.
379   *
380   * <p><i>Notes:</i> This is an implementation of the algorithm for
381   * Lexicographical Permutations Generation, described in Knuth's "The Art of
382   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
383   * iteration order follows the lexicographical order. This means that
384   * the first permutation will be in ascending order, and the last will be in
385   * descending order.
386   *
387   * <p>Duplicate elements are considered equal. For example, the list [1, 1]
388   * will have only one permutation, instead of two. This is why the elements
389   * have to implement {@link Comparable}.
390   *
391   * <p>An empty iterable has only one permutation, which is an empty list.
392   *
393   * <p>This method is equivalent to
394   * {@code Collections2.orderedPermutations(list, Ordering.natural())}.
395   *
396   * @param elements the original iterable whose elements have to be permuted.
397   * @return an immutable {@link Collection} containing all the different
398   *     permutations of the original iterable.
399   * @throws NullPointerException if the specified iterable is null or has any
400   *     null elements.
401   * @since 12.0
402   */
403  @Beta
404  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
405      Iterable<E> elements) {
406    return orderedPermutations(elements, Ordering.natural());
407  }
408
409  /**
410   * Returns a {@link Collection} of all the permutations of the specified
411   * {@link Iterable} using the specified {@link Comparator} for establishing
412   * the lexicographical ordering.
413   *
414   * <p>Examples: <pre>   {@code
415   *
416   *   for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
417   *     println(perm);
418   *   }
419   *   // -> ["a", "b", "c"]
420   *   // -> ["a", "c", "b"]
421   *   // -> ["b", "a", "c"]
422   *   // -> ["b", "c", "a"]
423   *   // -> ["c", "a", "b"]
424   *   // -> ["c", "b", "a"]
425   *
426   *   for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
427   *     println(perm);
428   *   }
429   *   // -> [1, 1, 2, 2]
430   *   // -> [1, 2, 1, 2]
431   *   // -> [1, 2, 2, 1]
432   *   // -> [2, 1, 1, 2]
433   *   // -> [2, 1, 2, 1]
434   *   // -> [2, 2, 1, 1]}</pre>
435   *
436   * <p><i>Notes:</i> This is an implementation of the algorithm for
437   * Lexicographical Permutations Generation, described in Knuth's "The Art of
438   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
439   * iteration order follows the lexicographical order. This means that
440   * the first permutation will be in ascending order, and the last will be in
441   * descending order.
442   *
443   * <p>Elements that compare equal are considered equal and no new permutations
444   * are created by swapping them.
445   *
446   * <p>An empty iterable has only one permutation, which is an empty list.
447   *
448   * @param elements the original iterable whose elements have to be permuted.
449   * @param comparator a comparator for the iterable's elements.
450   * @return an immutable {@link Collection} containing all the different
451   *     permutations of the original iterable.
452   * @throws NullPointerException If the specified iterable is null, has any
453   *     null elements, or if the specified comparator is null.
454   * @since 12.0
455   */
456  @Beta
457  public static <E> Collection<List<E>> orderedPermutations(
458      Iterable<E> elements, Comparator<? super E> comparator) {
459    return new OrderedPermutationCollection<E>(elements, comparator);
460  }
461
462  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
463    final ImmutableList<E> inputList;
464    final Comparator<? super E> comparator;
465    final int size;
466
467    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
468      this.inputList = ImmutableList.sortedCopyOf(comparator, input);
469      this.comparator = comparator;
470      this.size = calculateSize(inputList, comparator);
471    }
472
473    /**
474     * The number of permutations with repeated elements is calculated as
475     * follows:
476     * <ul>
477     * <li>For an empty list, it is 1 (base case).</li>
478     * <li>When r numbers are added to a list of n-r elements, the number of
479     * permutations is increased by a factor of (n choose r).</li>
480     * </ul>
481     */
482    private static <E> int calculateSize(
483        List<E> sortedInputList, Comparator<? super E> comparator) {
484      int permutations = 1;
485      int n = 1;
486      int r = 1;
487      while (n < sortedInputList.size()) {
488        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
489        if (comparison < 0) {
490          // We move to the next non-repeated element.
491          permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
492          r = 0;
493          if (permutations == Integer.MAX_VALUE) {
494            return Integer.MAX_VALUE;
495          }
496        }
497        n++;
498        r++;
499      }
500      return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
501    }
502
503    @Override
504    public int size() {
505      return size;
506    }
507
508    @Override
509    public boolean isEmpty() {
510      return false;
511    }
512
513    @Override
514    public Iterator<List<E>> iterator() {
515      return new OrderedPermutationIterator<E>(inputList, comparator);
516    }
517
518    @Override
519    public boolean contains(@Nullable Object obj) {
520      if (obj instanceof List) {
521        List<?> list = (List<?>) obj;
522        return isPermutation(inputList, list);
523      }
524      return false;
525    }
526
527    @Override
528    public String toString() {
529      return "orderedPermutationCollection(" + inputList + ")";
530    }
531  }
532
533  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
534
535    List<E> nextPermutation;
536    final Comparator<? super E> comparator;
537
538    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
539      this.nextPermutation = Lists.newArrayList(list);
540      this.comparator = comparator;
541    }
542
543    @Override
544    protected List<E> computeNext() {
545      if (nextPermutation == null) {
546        return endOfData();
547      }
548      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
549      calculateNextPermutation();
550      return next;
551    }
552
553    void calculateNextPermutation() {
554      int j = findNextJ();
555      if (j == -1) {
556        nextPermutation = null;
557        return;
558      }
559
560      int l = findNextL(j);
561      Collections.swap(nextPermutation, j, l);
562      int n = nextPermutation.size();
563      Collections.reverse(nextPermutation.subList(j + 1, n));
564    }
565
566    int findNextJ() {
567      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
568        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
569          return k;
570        }
571      }
572      return -1;
573    }
574
575    int findNextL(int j) {
576      E ak = nextPermutation.get(j);
577      for (int l = nextPermutation.size() - 1; l > j; l--) {
578        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
579          return l;
580        }
581      }
582      throw new AssertionError("this statement should be unreachable");
583    }
584  }
585
586  /**
587   * Returns a {@link Collection} of all the permutations of the specified
588   * {@link Collection}.
589   *
590   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm
591   * for permutations generation, described in Knuth's "The Art of Computer
592   * Programming", Volume 4, Chapter 7, Section 7.2.1.2.
593   *
594   * <p>If the input list contains equal elements, some of the generated
595   * permutations will be equal.
596   *
597   * <p>An empty collection has only one permutation, which is an empty list.
598   *
599   * @param elements the original collection whose elements have to be permuted.
600   * @return an immutable {@link Collection} containing all the different
601   *     permutations of the original collection.
602   * @throws NullPointerException if the specified collection is null or has any
603   *     null elements.
604   * @since 12.0
605   */
606  @Beta
607  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
608    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
609  }
610
611  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
612    final ImmutableList<E> inputList;
613
614    PermutationCollection(ImmutableList<E> input) {
615      this.inputList = input;
616    }
617
618    @Override
619    public int size() {
620      return IntMath.factorial(inputList.size());
621    }
622
623    @Override
624    public boolean isEmpty() {
625      return false;
626    }
627
628    @Override
629    public Iterator<List<E>> iterator() {
630      return new PermutationIterator<E>(inputList);
631    }
632
633    @Override
634    public boolean contains(@Nullable Object obj) {
635      if (obj instanceof List) {
636        List<?> list = (List<?>) obj;
637        return isPermutation(inputList, list);
638      }
639      return false;
640    }
641
642    @Override
643    public String toString() {
644      return "permutations(" + inputList + ")";
645    }
646  }
647
648  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
649    final List<E> list;
650    final int[] c;
651    final int[] o;
652    int j;
653
654    PermutationIterator(List<E> list) {
655      this.list = new ArrayList<E>(list);
656      int n = list.size();
657      c = new int[n];
658      o = new int[n];
659      Arrays.fill(c, 0);
660      Arrays.fill(o, 1);
661      j = Integer.MAX_VALUE;
662    }
663
664    @Override
665    protected List<E> computeNext() {
666      if (j <= 0) {
667        return endOfData();
668      }
669      ImmutableList<E> next = ImmutableList.copyOf(list);
670      calculateNextPermutation();
671      return next;
672    }
673
674    void calculateNextPermutation() {
675      j = list.size() - 1;
676      int s = 0;
677
678      // Handle the special case of an empty list. Skip the calculation of the
679      // next permutation.
680      if (j == -1) {
681        return;
682      }
683
684      while (true) {
685        int q = c[j] + o[j];
686        if (q < 0) {
687          switchDirection();
688          continue;
689        }
690        if (q == j + 1) {
691          if (j == 0) {
692            break;
693          }
694          s++;
695          switchDirection();
696          continue;
697        }
698
699        Collections.swap(list, j - c[j] + s, j - q + s);
700        c[j] = q;
701        break;
702      }
703    }
704
705    void switchDirection() {
706      o[j] = -o[j];
707      j--;
708    }
709  }
710
711  /**
712   * Returns {@code true} if the second list is a permutation of the first.
713   */
714  private static boolean isPermutation(List<?> first, List<?> second) {
715    if (first.size() != second.size()) {
716      return false;
717    }
718    Multiset<?> firstMultiset = HashMultiset.create(first);
719    Multiset<?> secondMultiset = HashMultiset.create(second);
720    return firstMultiset.equals(secondMultiset);
721  }
722}