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Abstract

This report presents an independent cryptographic analysis of the Longfellow zero-knowledge
protocol [FS24]. This review complements the implementation-oriented audit by Trail of
Bits [oB25] and focuses exclusively on the protocol’s theoretical foundations.

1 Introduction

Scope of the report. This document presents a focused theoretical review of the Longfellow
zero-knowledge protocol as specified in [FS24], complementing the formal specification and se-
curity proofs given in the original paper. The scope of this report is limited to the theoretical
security analysis of the construction rather than a code-level audit. In particular, we verify that
the system achieves the claimed security guarantees of zero-knowledge and soundness. We carry
out the analysis in the Interactive Oracle Proof (IOP) model, where we show that Longfellow con-
stitutes a ZKIOP with well-defined round-by-round soundness and then analyze the properties
of the protocol obtained by compiling the ZKIOP via the BCS-transformation [BCS16]. We fur-
ther provide a refined concrete analysis that yields different parameter sets for the target security
level, summarized in Section 6. This report does not include any claims on the Longfellow ZK
implementation (https://github.com/google/longfellow-zk/), which are covered separately
in the audit conducted by Trail of Bits [oB25].

We note that several recent (unpublished) results on so-called proximity gap theorems for
error-correcting codes have appeared online [DG25, CHK25, CS25, BCGM25, GG25, BCH+

25,
FS25], including some positive and some negative results on previously stated conjectures. Im-
portantly, the Longfellow ZK system does not rely on any conjectures related to proximity gap
theorems. Furthermore, the concrete parameters chosen by the Longfellow ZK system (and an-
alyzed in this report) are not based on any recent positive results and instead rely on prior
peer-reviewed and published work.

Conclusions. Based on our analysis, the Longfellow ZK system satisfies (up to standard the-
oretical analysis) all properties required for a zero-knowledge proof system, and the selected
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parameters target more than 115 bits of security. The Longfellow ZK system takes adequate
measures to mitigate the recent attacks on the Fiat-Shamir heuristic. The Longfellow ZK sys-
tem relies on so-called proximity gap theorems, which have been analyzed in the fully provable
regime. At the end of the report, we provide a mechanism to boost security beyond 100 bits
through grinding and suggest additional defenses to further strengthen the protocol.
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Software Institute in Madrid, Spain, and a researcher at Ligero Inc. He received his PhD at
University of Oviedo, Spain, and was a postdoc at CWI Amsterdam, the Netherlands, and at
Aarhus University, Denmark, and later professor at Aalborg University, also in Denmark. His
expertise is on cryptography (in areas such as multiparty computation and secret sharing) and
error-correcting codes. He has been general co-chair of Eurocrypt 2025.
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Constructions. She served as program co-chair of Eurocrypt 2023 and received the distinguished
paper award at CCS’23.

Muthu Venkitasubramaniam is a professor of Computer Science at Georgetown University,
DC and co-founder of Ligero Inc. An expert on zero-knowledge proofs, secure multiparty com-
putation and concurrent security, Muthu earned his PhD in Computer Science from Cornell
University. Muthu is one of the steering committee members of zero-knowledge proof standard-
ization effort. Muthu is a recipient of a Google Faculty Research Award, Distinguished paper
award at CCS’23 and received the ICDE 2017 Influential Paper Award for his work on introduc-
ing new privacy techniques.

Eylon Yogev is a professor in the Department of Computer Science at Bar-Ilan University, Is-
rael, where he is also a member of the Bar-Ilan Center for Research in Applied Cryptography and
Cyber Security. His research focuses on probabilistic proof systems, with a particular emphasis
on efficient post-quantum zero-knowledge proofs (zkSNARKs). He co-authored the book Build-
ing Cryptographic Proofs from Hash Functions and is a recipient of the Krill Prize for Excellence,
the ACM SIGMOD Research Award, and Best Paper Awards at CRYPTO 2024 and PODS 2020.
He received his Ph.D. from the Weizmann Institute of Science and was a postdoctoral researcher
at Tel Aviv University, the Technion, Boston University, and the Simons Institute for the Theory
of Computing.

Overview of the Longfellow protocol. Longfellow is a zero-knowledge proof system that
demonstrates the correctness of an arithmetic circuit’s evaluation with high efficiency and min-
imal prover overhead. It builds upon two foundational components: the Ligero proof system
[AHIV17] and the Goldwasser–Kalai–Rothblum (GKR) interactive proof [GKR08]. The GKR
component provides a public-coin layered sumcheck protocol that verifies circuit satisfiability
by checking polynomial relations between successive layers of gates. Ligero, in turn, serves as
both a lightweight commitment scheme and a zero-knowledge proof system for enforcing linear
and quadratic constraints on committed data. The Longfellow construction integrates these prim-
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itives so that the prover first commits to its witness and to a masked GKR transcript, then uses
Ligero to prove that the committed transcript would cause the GKR verifier to accept—achieving
soundness, succinctness, and zero-knowledge simultaneously.

The remainder of this report is organized as follows. Section 2 introduces notations and
formal definitions. Section 3 summarizes the Longfellow protocol and its composition of Ligero
and layered sumcheck. Section 4 presents the main security analysis, covering soundness, zero-
knowledge, and the hybrid argument. Section 5 discusses the Fiat–Shamir transformation and
evaluates its impact on the protocol’s security guarantees. Finally, Section 6 details concrete
parameter selection and numerical soundness bounds.

2 Preliminaries

Basic notations. We say that a function µ : N→N is negligible if for every positive polynomial
p(·) and all sufficiently large τ’s it holds that µ(τ) < 1

p(τ) . We use the abbreviation PPT to denote
probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n} for some n ∈ N.
We will generally represent vectors over some sets with bold font, e.g. v, and matrices with
upper case fonts A. We denote by vi the ith coordinate of v. Moreover, we denote by A[j] the j-th
column of matrix A. For an NP relation R, we denote by Rx the set of witnesses of x and by LR
its associated language. That is, Rx = {w | (x, w) ∈ R} and LR = {x | ∃ w s.t. (x, w) ∈ R}. We
assume functions to be represented by a Boolean/arithmetic circuit C (with AND/MULTIPLY,
XOR/ADD gates of fan-in 2 and NOT gates), and denote the size of C by |C|. By default, we
define the size as the total number of gates, excluding NOT gates but including input gates.

2.1 Coding Notation

A code of length n over an alphabet Σ is simply a subset C ⊆ Σn. For vectors v, w ∈ Σn the
Hamming distance d(v, w) is the number of coordinates in which they differ, i.e. |{i ∈ [n] :
vi ̸= wi}|. Moreover, denote by d(v, C) the minimum distance of v from C, i.e. d(v, C) =
min{d(v, c) : c ∈ C}. Finally denote by d(V, C) the minimal distance between a vector set V and
a code C, namely d(V, C) = min{d(v, C) : v ∈ V}. For a code C ̸= {0}, its minimum distance is
dmin(C) := min{d(c, c′) : c, c′ ∈ C, c ̸= c′}. An elementary fact from coding theory is that given
an arbitrary vector v ∈ Σn, there exists at most one codeword c in C with d(c, v) ≤ dmin(C)/2.

A linear code L of length n over a finite field F is a code L ⊆ Fn which is also a vector space
over F. Consequently, it has a dimension k as a vector space. We then say that L is an [n, k, d]
linear code, where d = dmin(L) is its minimum distance.

The Ligero protocol uses Reed-Solomon (RS) codes, defined next.

Definition 2.1 (Reed-Solomon Code). For positive integers n, k, finite field F, and a vector ηηη =
(η1, . . . , ηn) ∈ Fn of pairwise distinct field elements, the code RSF,n,k,ηηη is the [n, k, n − k + 1] linear
code over F that consists of all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Interleaved codes. Given a linear code L ⊆ Fn and an integer m ≥ 1, we denote Lm the set
whose elements are all m × n matrices U over F such that every row Ui of U is a codeword
of L. By seeing matrices in Fm×n as vectors in (Fm)n (i.e., regarding each column as a sole
coordinate in the space Fm), Lm can be regarded as a code over the alphabet Fm. Moreover,

3



under such interpretation, the Hamming distance between matrices A, B ∈ Fm×n = (Fm)n (not
necessarily in Lm) becomes the number of columns j such that A[j] ̸= B[j]. Then the distance
between A and Lm is d(A, Lm) = min{d(A, U) : U ∈ Lm}, and the minimum distance of Lm is
dmin(Lm) = minU,V∈Lm

U ̸=V
d(U, V).

It is easy to verify that dmin(Lm) = dmin(L).

2.2 Zero-Knowledge Arguments

We denote by ⟨A(w), B(z)⟩(x) the random variable representing the (local) output of machine B
when interacting with machine A on common input x, when the random-input to each machine
is uniformly and independently chosen, and A (resp., B) has auxiliary input w (resp., z).

Definition 2.2 (Interactive argument system). A pair of PPT interactive machines ⟨P ,V⟩ is called
an interactive proof system for a language L if there exists a negligible function negl such that the
following two conditions hold:

1. Completeness: For every x ∈ L there exists a string w such that for every z ∈ {0, 1}∗,

Pr[⟨P(w),V(z)⟩(x) = 1] ≥ 1− negl(|x|).

2. Soundness: For every x /∈ L, every interactive PPT machine P∗, and every w, z ∈ {0, 1}∗

Pr[⟨P∗(w),V(z)⟩(x) = 1] ≤ negl(|x|).

Definition 2.3 (Zero-knowledge). Let ⟨P ,V⟩ be an interactive proof system for some language L. We
say that ⟨P ,V⟩ is computational zero-knowledge with respect to an auxiliary input if for every PPT
interactive machine V∗ there exists a PPT algorithm S , running in time polynomial in the length of its
first input, such that

{⟨P(w),V∗(z)⟩(x)}x∈L,w∈Rx ,z∈{0,1}∗
c≈ {⟨S⟩(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the left term denotes the
output of V∗ after it interacts with P on common input x, whereas the right term denotes the output of S
on x.

2.3 Interactive Oracle Proofs

Interactive Oracle Proofs (IOP) [BCS16, RRR16] are a type of proof system that combines the
aspects of Interactive Proofs (IP) [Bab85, GMR85] along with Probabilistic Checkable Proofs (PCP)
[BFLS91, AS98, ALM+

98], as well as generalizes Interactive PCPs (IPCP) [KR08]. In this model,
as in the PCP model, the verifier does not need to read the entire proof and can instead query
it at random locations. Similarly to the IP model, the prover and verifier interact over several
rounds. A k-round IOP has k rounds of interaction. In the ith round of interaction, the verifier
sends a uniform public message mi to the prover, and the prover generates πi. After running k
rounds of interaction, the verifier makes some queries to the proofs via oracle access and either
accepts or rejects them.
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Definition 2.4. Let R(x, ω) be an NP relation corresponding to an NP language L. An IOP system for
a relation R with round complexity k and soundness ϵ is a pair of PPT algorithms (P ,V) if it satisfies the
following properties:

• Syntax: On common input x and prover input ω, P and V run an interactive protocol of k rounds.
In each round i, V sends a message mi and P generates πi. Here the verifier has oracle access to
{π1, π2, . . . , πk}. We can express π = (π1, π2, . . . , πk). Based on the queries from these oracles, V
accepts or rejects.

• Completeness: If (x, ω) ∈ R then,

Pr[(P(x, ω),Vπ(x)) = 1] = 1

• Soundness: For every x /∈ L, every unbounded algorithm P∗ and proof π̃

Pr[(P∗,V π̃) = 1] ≤ negl(|x|)

The notion of IOP can be extended to provide a zero-knowledge property as well. Next, we
define the definition of zero-knowledge IOP.

Definition 2.5. Let ⟨P ,V⟩ be an IOP for R. We say that ⟨P ,V⟩ is a (honest verifier) zero-knowledge
IOP (or ZKIOP for short) if there exists a PPT simulator S , such that for any (x, ω) ∈ R, the output of
S(x) is distributed identically to the view of V in the interaction (P(x, ω),Vπ(x)).

Honest-Verifier Zero-Knowledge (HVZK) is a relaxed notion of zero-knowledge that assumes
the verifier follows the protocol honestly, that is, it samples and sends its messages exactly as
prescribed. Under this assumption, a proof system is honest-verifier zero-knowledge if there
exists an efficient simulator that can generate a transcript indistinguishable from a real interaction
between the prover and an honest verifier, without knowing the witness. Our ZK proof follows
in two steps. We first prove that the Longfellow protocol is an honest-verifier perfect ZKIOP, and
then compile it into a ZK non-interactive argument using the Fiat-Shamir heuristic.

2.4 The Layered Sumcheck Protocol

The sumcheck protocol is an interactive proof that allows a prover to convince a verifier of the
value of a large sum of a low-degree polynomial over the Boolean hypercube without the verifier
having to compute the sum directly. The prover sends univariate polynomials that gradually
reduce the high-dimensional sum into a single evaluation, while the verifier checks consistency
at each step by issuing random challenges. In the context of verifiable computation, initiated with
the GKR [GKR08] proof system, sumcheck is used to certify that the values assigned to the gates
of one circuit layer are consistent with those of the next layer. Thus, verifying a full circuit reduces
to checking a sequence of polynomial sums, each enforced by the sumcheck protocol, rather than
recomputing the entire circuit. In particular, the GKR protocol is a public-coin interactive proof
system for verifying the correct evaluation of an arithmetic circuit. It allows a prover P to
convince a verifier V that a given circuit C of size S and depth d evaluates to a claimed output
on a public input x and a private witness w. The proof system consists of the following phases:
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• Layered circuit representation. The circuit C is assumed to be layered, with each layer
consisting of additions and multiplications over a finite field F. The prover begins with the
claim that the output layer evaluates to a certain value, and the verifier checks this claim
recursively layer by layer until reaching the input layer.

• Sumcheck subprotocol. At each layer, the prover must demonstrate that the values of
the gates are consistent with the wiring of the circuit and with the claimed values of the
next layer. This is accomplished using the sumcheck protocol: the prover and verifier
engage in a sequence of rounds where the prover sends a polynomial, the verifier samples a
random challenge, and the prover responds with evaluations consistent with that challenge.
Correctness of the sumcheck ensures that, with high probability, the prover cannot cheat
about the values computed by the circuit.

• Efficiency. The prover’s complexity is quasi-linear in the size of the circuit. The verifier’s
algorithm VGKR can naturally be divided into two parts (V1

GKR,V2
GKR), both (interactive) PPT

algorithms. The first is the interactive phase, in which the verifier samples random challenges
and exchanges messages with the prover during the execution of the sumcheck protocol.
The second is a check phase which bundles together all of the verifier’s consistency checks.
The GKR protocol additionally implies verifier efficiency (where the verifier’s complexity is
sublinear in the circuit size) for structured circuits. However, this feature is neither required
nor satisfied by the GKR protocols used in the Longfellow ZK system.

The GKR protocol has served as the foundation for numerous subsequent works that aimed to
optimize its efficiency, reduce communication complexity, and improve practical performance.
For the purpose of this review, we refer to the specific instantiation of the sumcheck protocol
used within the Longfellow construction as the layered sumcheck.

2.5 The Ligero Proof System [AHIV17]

At a high level, the Ligero proof system, denoted by (PLIG,VLIG), works as follows: the prover
encodes the witness into a structured matrix and convinces the verifier of correctness through
three checks. It has five main steps:

1. Matrix Preparation - The prover first encodes the witness (the satisfying assignment to
the circuit), together with the internal values of the circuit, into a two-dimensional matrix
of codewords, denoted by U, so that each row is an evaluation of a low-degree polynomial.
This encoding enables both redundancy (for error-checking) and algebraic structure (for
enforcing circuit relations).

2. Commitment Phase - The prover commits to the entire matrix by hashing its columns into
a Merkle tree and sending the root to the verifier. This ensures binding: once the root is
fixed, the prover cannot change individual entries without being caught.

3. Challenge Response Phase - The verifier then sends random challenges, and the prover
responds to the verifier’s challenge with three responses: the degree test, linear test, and
quadratic test, as used in Ligero.
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4. Opening Phase - As a final challenge, the verifier queries the committed matrix. Whereas
the prover responds by opening the requested columns, along with Merkle authentication
paths, proving that they are consistent with the committed root.

5. Verification Tests - Finally, on the opened columns, the verifier spot checks the degree
test, linear test, and quadratic test. These tests check that the encodings correspond to low-
degree polynomials, satisfy the linear constraints, and enforce multiplication correctness.
Passing these tests with high probability implies that the entire hidden matrix encodes a
valid witness.

In the Longfellow protocol, Ligero plays two distinct roles. First, it is employed as a commit-
ment scheme, denoted by LigeroCommit, that allows the prover to commit to the witness w along
with random padding. Second, it is invoked as a proof system (PLIG,VLIG) to demonstrate that a
committed transcript of the sumcheck protocol is valid. More concretely, the statement proven in
the Ligero scheme can be constructed as follows:

(1) Representation of the witness in two fields. For implementation reasons, the witness is
represented in two distinct finite fields: the primary field Fp and the binary extension field
GF(2128). We denote by w1 and w2 the portions of the witness encoded in these two fields,
respectively, and by w the original witness that they both represent. The two representations
must remain consistent across fields so that the proof system guarantees the correctness of the
same underlying computation.

(2) Cross-field authentication. To ensure this consistency, the protocol introduces a lightweight
authentication mechanism based on a message authentication code (MAC). The prover samples
a private key kp and the verifier samples an independent key kv, defining a joint key k = kp ⊕ kv.
The value m = MACk(w) serves as an authentication tag binding the two field representations of
w. The MAC guarantees that both w1 and w2 correspond to the same underlying witness w, even
though they are handled over different fields.

(3) Augmented circuits and proven statement. For each field instance i ∈ {1, 2}, the proto-
col defines an augmented circuit C̃i that checks both circuit correctness and MAC consistency.
The prover commits to w′i = (wi, w, kp, padi) using the Ligero commitment scheme comi =
LigeroCommit(w′i; r), where padi is a random pad masking the layered sumcheck transcript. The
layered GKR protocol is then executed over C̃i with masked prover messages T′i = Ti + padi. Fi-
nally, the Ligero verifier is invoked on a circuit C̃′i , which decrypts T′i and runs the layered sum-
check verifier for C̃i. The resulting statement verified by VLIG is that there exist (wi, w, kp, padi, r)
such that

comi = LigeroCommit(w′i; r) and VGKR

(
C̃′i , (x, m, kv), T′i , (wi, w, kp)

)
= 1.

The Ligero IOP. It is possible to cast Ligero in the IOP model because its interaction naturally
fits the structure of an interactive oracle proof. In Ligero, the proof oracle consists of an initial
commitment that encodes the witness within a matrix and oracle responses to the verifier’s
queries, while the verifier’s role is limited to sampling random challenges and reading a small

7



number of columns from the prover’s oracle. These operations exactly match the query–answer
interface defined by the IOP model, in which the prover provides oracle access to its messages
rather than sending them in full. As a result, Ligero can be viewed as an IOP that implements
the consistency tests through oracle queries.

Perfect simulation in the IOP model. In the Ligero IOP, the verifier’s view consists of the
commitments produced by the prover and the partial openings revealed during the consistency
tests. Each committed matrix encodes the witness using a Reed–Solomon (RS) code, and before
committing, the prover adds a fresh random mask to every encoded row. This guarantees that the
committed codewords are statistically independent of the witness. Equivalently, the RS encoding
can be interpreted as a form of packed secret sharing, where each codeword symbol shares a linear
combination of several witness values while preserving perfect privacy against any party that
observes fewer than the reconstruction threshold number of positions. Hence, the privacy of the
codewords, and thus of the commitment, is implied by the privacy of the underlying packed
secret sharing scheme. During verification, all challenges are sampled uniformly at random,
and the prover’s responses depend only on these public coins and the random mask applied
at commitment time. Consequently, every symbol or polynomial evaluation observed by the
verifier is distributed uniformly over the field, ensuring that the entire transcript is statistically
independent of the witness. This establishes that Ligero achieves perfect honest-verifier zero
knowledge in the IOP model.

Instantiating a commitment scheme via the Ligero proof system. Recall that the Ligero proof
system proceeds in three stages. In the first stage, the prover commits to the “extended” witness
that includes the inputs and all intermediate computations. Namely, it arranges the extended
witness values in a matrix, adds blinding rows at the bottom of the matrix, pads each row
with sufficient randomness, encodes each row as a low-degree polynomial, and then computes
a Merkle tree over all row encodings. Then the root of that Merkle tree is published as a com-
mitment. In the second stage, the prover receives a challenge and responds with a degree, linear,
and quadratic test. In the third stage, the prover receives columns to be opened from the encoded
matrix committed via the Merkle tree in the first stage.

To realize the commitment scheme, the prover first receives a witness w and employs the same
strategy as in the first stage of the Ligero scheme to commit to w. Next, it receives a statement to
be proven based on the completed sumcheck transcript. It then constructs the extended witness
based on the statement and w and commits to it once again using the procedure employed in
the first stage to build a second Merkle tree. It then executes Stages 2 and 3 of the Ligero proof
system, treating the two commitments to w and to the extended witness as a single matrix. This
is achieved by stacking the encoded matrices on top of one another. When the columns have to
be opened, the corresponding columns are opened in both commitments separately.

In the Longfellow construction, they do not have to employ the second commitment during
the prove phase. The key insight is that if the constraints to be proven in the prove phase are
linear, no additional values need to be committed, i.e., there are no intermediate computations.
However, the GKR verification constraint indeed has multiplication constraints, but it introduces
a novel mechanism that requires proving only linear constraints in the prove phase. The idea is
to generate random Beaver-style multiplication triples during the commit phase, then execute the
Beaver reduction on these triples for the multiplication gates in the constraints, which requires
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revealing the masked wire values in the clear. Then, all constraints can be expressed as linear
constraints on the values committed in the commit phase.

3 The Longfellow Protocol

The Longfellow construction combines two main components. The first is the Ligero scheme
[AHIV17], which functions as a cryptographic commitment scheme and enables efficient ver-
ification of algebraic relations on committed data. In Longfellow, Ligero serves to verify the
integrity of the transcript generated by a variant of the Goldwasser–Kalai–Rothblum (GKR) pro-
tocol [GKR08], a public-coin interactive proof system that builds on sumcheck arguments. The
second component is this interactive protocol itself, which establishes that an arithmetic circuit
C with public input x and private witness w is satisfied, i.e., that C(x, w) = 0. Longfellow in-
tegrates these two ingredients: the prover begins by committing to a string w′, via Ligero, that
includes the witness w along with auxiliary padding. Next, the prover and verifier execute the
GKR layered sumcheck protocol, in which each prover message is committed and appropriately
padded. Finally, the prover uses the Ligero proof system to show that the committed value w′

is consistent with the transcript and that this transcript would indeed cause the GKR verifier to
accept. By combining the succinctness and structure of GKR with the lightweight commitment
and zero-knowledge properties of Ligero, Longfellow transforms GKR into a privacy-preserving
argument system. The protocol is described in Figure 1. For convenience, we provide a list of
our parameters in Table 1.

Parameter Description
x Public statement
n |w|

w1 Witness over Fp
n′1 |w1|
w2 Witness over GF(2128)
n′2 |w2|
N n/128
κ Random Oracle output length

Table 1: Description of the parameters.

4 The Security Analysis of the Interactive Variant

The completeness of the protocol is evident from its description, as each step aligns with the
presence of a valid witness that meets the set constraints. This report emphasizes the analysis
of soundness (both standard and round-by-round) and zero-knowledge properties, offering a
high-level discussion of their validity. We examine these properties within the Interactive Oracle
Proof (IOP) framework (see Definition 2.4) and deduce that these properties are preserved in the
resulting non-interactive protocol, achieved through the BCS transformation [BCS16]. In the IOP
model, the interactive version of the Longfellow ZK protocol involves the prover using the proof
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The ZKP for an NP-relationR = R (x, w) is executed between a prover P that has input (x, w) ∈
R and a verifier V that has input x. Let R be represented by the verification circuits C1 (·, ·, ·)
defined over a field Fp and C2 (·, ·, ·) defined over a field GF(2128). Namely, for every x, ∃w ∈
{0, 1}128N such that R(x, w) = 1 iff ∃w1 ∈ F

n′1
p and w2 ∈ GF(2128)n′2 such that C1 (x, w1, w) = 0

and C2 (x, w2, w) = 0. Let (PGKR,VGKR) denote the GKR layered sumcheck interactive system as
discussed in Section 2.4, let (PLIG,VLIG) denote the Ligero ZKIOP, and let LigeroCommit denote
the Ligero commitment algorithm as defined in Section 2.5. Let MACa,b(x) = ax + b denote a
MAC on the message x where a, b, x ∈ GF(2128); for vectors a, b, x ∈ GF(2128)N , we define the
componentwise extension MACa,b(x) = (MACa1,b1(x1), MACa2,b2(x2), . . . , MACaN ,bN (xN)).

• For i ∈ {1, 2}, define circuits C̃i((x, m, kv), (wi, w, kp)) where kp, kv ∈ {0, 1}256N as follows:

– Assert Ci(x, wi, w) = 0

– Assert MACk(w) = m where k = kp ⊕ kv with all computation performed in
GF(2128) (note that GF(2128) arithmetic is emulated in Fp for C1).

1. P and V compute the sizes ℓ1 ← szFp(C̃1) and ℓ2 ← szGF(2128)(C̃2) of the sumcheck
transcripts in the respective fields.

2. P samples kp ← {0, 1}256N and computes the augmented witnesses w′i ← (wi, w, kp, padi)

where pad1 ← F
ℓ1
p and pad2 ← GF(2128)ℓ2 .

3. P computes com1 ← LigeroCommit(w′1) and com2 ← LigeroCommit(w′2) over fields Fp and
GF(2128) respectively and sends com1, com2 to V .

(a) V samples kv ← {0, 1}256N and sends to P .

(b) P computes m← MACkv⊕kp(w) and sends to V .

4. P and V sequentially execute two instances of the protocol (PGKR,VGKR) with the cor-
responding inputs C̃1, ((x, m, kv), (w1, w, kp)) and C̃2, ((x, m, kv), (w2, w, kp)) over their re-
spective fields, with the following modification:

• Whenever PGKR instructs the prover to send the jth message mj ∈ Fp to VGKR, P
sends t′j ← mj + padi[j] where padi[j] is the jth block of padj.

• When VGKR instructs the verifier to send the jth random challenge rj, V returns rj.

At the end, P and V hold encrypted sumcheck transcripts T′1 and T′2 respectively for the
instances C̃1, ((x, m, kv), (w1, w, kp)) and C̃2, ((x, m, kv), (w2, w, kp)).

5. Define the circuit C′i((x, m, kv), T′i , (wi, w, kp)) to first decrypt the transcript Ti by subtract-
ing out the pads from padi, and then run VGKR(C′i((x, m, kv), T′i , (wi, w, kp)))

6. Sequentially for i ∈ {1, 2}, P and V run the protocol methods
PLIG((C′i, (x, m, kv), T′i , comi), (wi, w, kp)) and VLIG(C′i, (x, m, kv), T′i , comi) respectively,
concluding with V output the result.

Figure 1: The Longfellow Protocol
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oracle for commitment rather than a hash-based Merkle tree, as the proof oracle serves as an ideal
vector commitment mechanism. We will identify the soundness and round-by-round soundness
error in the interactive variant and conclude the soundness error of the final protocol by applying
the analysis of the BCS transformation from [CY24]. We will demonstrate that the Longfellow
ZK achieves perfect simulation in the IOP model and once again rely on the BCS-transformation
to conclude that the final protocol satisfies computational zero-knowledge.

Theorem 4.1. The proof system from Figure 1 is a ZKIOP (Definitions 2.4-2.5) with perfect zero-
knowledge and round-by-round knowledge soundness error

εK = max
{

n1 + 2
|Fp|

,
n2 + 2

2128 ,(
( 1+ρ1

2 )n1

t

)/(
n1

t

)
+

(
2ρ1n1 − 2

t

)/(
n1

t

)
,(

( 1+ρ2
2 )n2

t

)/(
n2

t

)
+

(
2ρ2n2 − 2

t

)/(
n2

t

)
,

N
2128 ,

2
|Fp|

,
2

2128

}
where ni, ρi are the length and rate of the Reed Solomon code used in the Ligero system for C′i , i = 1, 2,

t is the number of opened columns, and Dj := ∑
depj
i=1 ⌈logwidj,i⌉ for j = 1, 2, where depj denotes the depth

(number of layers) of circuit C′j and widj,i denotes the width of the i-th layer of C′j.

Proof. Completeness is easily followed from the completeness of both proof systems and the
correctness of the commitment scheme. We will next analyze plain soundness, followed by
round-by-round soundness and then ZK.

Soundness. We argue the soundness of the protocol in the IOP model and analyze the non-
interactive separately in Section 5. The Ligero commitments to w′i and proofs involving w′i are
performed with Reed-Solomon codes of lengths ni and rates ρi over fields Fi, for i = 1, 2, where
F1 := Fp and F2 := GF(2128)

Here are the high-level steps in arguing the soundness of the Longfellow ZK protocol:

1. Except with probability

max

{
n1 + 1
|F1|

+

(
( 1+ρ1

2 )n1

t

)/(
n1

t

)
,

n2 + 1
|F2|

+

(
( 1+ρ2

2 )n2

t

)/(
n2

t

)}
,

witnesses w′1 and w′2 can be extracted from the com1 and com2. Indeed, for each i, the
extractor can obtain the matrix Ui (the matrix produced in the matrix preparation part). By
Theorem 4.3, if the prover passes the proof with probability more than ni+1

|F1| + ( 1+ρi
2 )t then

this matrix must be at distance at most (di − 1)/2 from the “interleaved code”, meaning
that there exist a matrix Vi, all of whose rows are codewords, which differs from U in at
most (di − 1)/2 columns. Here, di is the minimum distance of the code. By the properties
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of error-correcting codes, this matrix Vi is unique. Moreover, Reed-Solomon codes have
efficient correction in the presence of (di − 1)/2 errors, by e.g., using the Berlekamp-Welch
decoding algorithm. So the extractor can obtain Vi and define the unique w′i as the messages
encoded by this matrix Vi.

Note that in an honest execution of the protocol, w′1 and w′2 should be of the form w′1 =
(w1, w, kp, pad1) and w′2 = (w2, w, kp, pad2) respectively. However, at this point, we have not
yet guaranteed that w and kp are the same in both w′1 and w′2. Therefore, we will, for the

moment, denote them w′1 = (w1, w(1), k(1)p , pad1) and w′2 = (w2, w(2), k(2)p , pad2).

2. Except with probability

max
{ 1
|F1|

+

(
2ρ1n1 − 2

t

)/(
n1

t

)
,

1
|F2|

+

(
2ρ2n2 − 2

t

)/(
n2

t

)}
,

the inputs and extracted witnesses, (x, T, com1), w′1 := (w1, w(1), k(1)p , pad1) and (x, T, com2),

w′2 := (w2, w(2), k(2)p , pad2) satisfy C̃1 and C̃2, respectively. This comes from the soundness
analysis in Theorem 4.4. Note that this implies that:

(a) MAC
(k(1)p )⊕(kv)

(w(1)) = MAC
(k(2)p )⊕(kv)

(w(2)), and

(b) The sumcheck transcripts cause the sumcheck verifier to accept in both sumcheck
interactions.

3. Except with probability N · 2−128, w(1) = w(2).

Indeed, in order to find w(1) ̸= w(2), k(1)p and k(2)p with MAC
(k(1)p )⊕(kv)

(w(1)) = MAC
(k(2)p )⊕(kv)

(w(2))

a malicious prover would need to find some i ∈ [N] where the i-th coordinates of w(1), w(2)

are different, i.e. w(1)
i ̸= w(2)

i , and where MAC
(k(1)p )i⊕(kv)i

(w(1)
i ) = MAC

(k(2)p )i⊕(kv)i
(w(2)

i ).

Note (k(1)p )i, (k
(2)
p )i and w(1)

i , w(2)
i are all chosen before knowing (kv)i. Here (k(1)p )i, (k

(2)
p )i

and (kv)i are the i-th coordinates of k(1)p , k(2)p , kv, respectively.

Moreover, the MAC is key-homomorphic, meaning

MAC
(k(1)p )i⊕(kv)i

(w(1)
i ) = MAC

(k(1)p )i
(w(1)

i )⊕MAC(kv)i
(w(1)

i )

and
MAC

(k(2)p )i⊕(kv)i
(w(2)

i ) = MAC
(k(2)p )i

(w(2)
i )⊕MAC(kv)i

(w(2)
i )

Therefore we can rewrite MAC
(k(1)p )i⊕(kv)i

(w(1)
i ) = MAC

(k(2)p )i⊕(kv)i
(w(2)

i ) as

MAC(kv)i
(w(1)

i )⊕MAC(kv)i
(w(2)

i ) = MAC
(k(1)p )i

(w(1)
i )⊕MAC

(k(2)p )i
(w(2)

i )

Write Mi := MAC
(k(1)p )i

(w(1)
i )⊕ MAC

(k(2)p )i
(w(2)

i ), which can be fully chosen by the adver-

sary. The probability that the adversary finds w(1)
i ̸= w(2)

i and Mi and with MAC(kv)i
(w(1)

i )⊕
MAC(kv)i

(w(2)
i ) = Mi, without knowing (kv)i, is 2−128. Applying a union bound, we get
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the aforementioned bound N · 2−128.1 Therefore, from now on we assume w(1) = w(2) and
denote it w.

4. Let Dj := ∑
depj
i=1 ⌈logwidj,i⌉ for j = 1, 2, where depj denotes the depth (number of layers) of

circuit C′j and widj,i denotes the width of the i-th layer of C′j. Then, except with probability

max
{

4D1

|F1|
,

4D2

|F2|

}
,

w, w1 and w, w2 satisfy the respective circuits. This comes from the soundness error of a
sumcheck protocol, which by [Tha22, Proposition 4.1] is upper bounded by νd/|F| where
ν is the number of variables of the polynomial and d is the maximum degree of a variable.
Concretely in this protocol, for the i-th layer of the circuit C′j, sumcheck is used to verify a
claim on a polynomial of maximum degree 2 in at most 2⌈logwidj,i⌉ variables. Therefore
the soundness error of the sumcheck at each layer is 4⌈logwidj,i⌉. By applying the union
bound to all layers, we get the expression above.

Putting everything together, we have shown that except with the probability

εsnd
K = max

{
n1 + 1
|Fp|

+

(
( 1+ρ1

2 )n1

t

)/(
n1

t

)
,

n2 + 1
|Fp|

+

(
( 1+ρ2

2 )n2

t

)/(
n2

t

)
,

1
|Fp|

+

(
2ρ1n1 − 2

t

)/(
n1

t

)
,

1
2128 +

(
2ρ2n2 − 2

t

)/(
n2

t

)}
+

N
2128 + max

{
4D1

|Fp|
,

4D2

2128

}
(1)

if the proof passes the prover knows w with (x, w) ∈ R.

Remark 1. Note that the soundness analysis above holds even if the prover is allowed to partially choose
the statement C′i after having committed to the matrix Ui. Indeed, Vi is uniquely determined by Ui (if it
exists), and otherwise the prover will be caught with high probability in the code test, which is independent
of the statement. If the prover chooses a circuit such that it is not satisfied by the input encoded by Vi, then
either the quadratic or linear test rejects except with probability at most (2ρini−2

t )
/
(ni

t ) +
1
|F| (see proof of

Theorem 4.4 below).

Round-by-round (RBR) knowledge soundness. We will now analyze the round-by-round sound-
ness error of the protocol. The concept of round-by-round soundness was introduced in [CCH+

19]
as a method for evaluating the soundness of a proof system after it is transformed into a non-
interactive protocol using the Fiat-Shamir heuristic. The final Longfellow ZK proof system indeed
utilizes the BCS-transformation, which, in turn, relies on the Fiat-Shamir heuristic, to convert the
ZKIOP discussed in this section into a non-interactive protocol. As shown in [BCS16], the sound-
ness of the protocol resulting from the BCS-transformation can be analyzed by identifying the
round-by-round knowledge soundness of the IOP. We repeat the definition of round-by-round
knowledge from [BGK+

23] (which in turn is a variant of [CMS19]).
1Indeed if the prover could find these with probability more than 2−128, the adversary would break one-time

security of the MAC, which promises that even if the adversary can query MAC(kv)i
(w(1)

i ) for a chosen w(1)
i , the

probability of guessing MAC(kv)i
(w(2)

i ) for a different chosen w(2)
i is still 2−128.
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Definition 4.2. A 2r-round protocol Π for a language L has round-by-round knowledge error εK(·) if
there exists a polynomial time extractor E and “doomed set” D or partial transcripts of interaction using
Π such that the following hold:

1. For all x, (x, ∅) ∈ D, where ∅ denotes the empty transcript.

2. For any input x and complete transcript τ, if (x, τ) ∈ D then V(x, τ) = reject.

3. If for i ∈ [r], (x, τ) is a 2(i − 1)-round partial transcript such that (x, τ) ∈ D, then for every
possible prover message α if

Pr[β← V(x, (τ, α)) : (x, (τ, α, β)) ̸∈ D] > εK(x),

then E(x, τ, α) outputs a valid witness for x.

We give a high-level argument of why the Longfellow ZK system is round-by-round knowl-
edge sound by identifying the ”doomed set”, and the soundness analysis presented above will
directly give the probability of transcripts going out of the doomed set.

• Before the MAC-computation round: There are two commitments made using LigeroCommit,
one for each field. The verifier returns its share of the MAC key. All transcripts will be in-
cluded in the doomed set, except the ones where valid witnesses w′1 := (w1, w(1), k(1)p , pad1)

and w′2 := (w2, w(2), k(2)p , pad2) can be extracted and where MACkv⊕kp(w
(1)) = MACkv⊕kp(w

(2))

and w(1) ̸= w(2). From the analysis, this probability is at most N · 2−128.

• Round by round soundness of GKR: The GKR protocol is a leveled sumcheck protocol.
The RBR soundness of the GKR sub-protocol will be depend on the RBR soundness of the
sumcheck protocol. This is d/|F| where d is the maximum degree of any variable in the
multivariate polynomial. In the Longfellow ZK protocols d = 2. The actual protocol uses an
”encrypted” version of the GKR to identify the doomed transcripts. We compute the actual
transcripts by subtracting the pads extracted from the Ligero commitment. If the Ligero
commitments are not extractable, all transcripts are included in the doomed transcripts.

• Round by round soundness in the Ligero proof: There are two rounds. In the first round,
the prover responds with the code and linear/quadratic tests; in the second round, the
prover reveals columns of the commitment. We analyze the RBR soundness for each of
these rounds:

Prior to columns being revealed: As detailed in [AHIV17], w.r.t code test, the doomed
transcripts exclude all transcripts for which the code test result computed accord-
ing to the committed matrix is (di − 1)/2-close to a codeword, yet the matrix is more
than (di − 1)/2-far from any codeword. From Theorem 4.3, the probability over the
randomness for the code test that such a transcript occurs is at most (ni + 1)/|F|. For
the remaining transcripts, where the committed matrix is (di − 1)/2-close, doomed
transcripts exclude the ones for which the extracted witness does not satisfy either
the linear or quadratic constraints, yet the response to the linear and quadratic tests
computed according to the committed matrix passes the tests. Such transcripts occur
with probability at most 1/|F|. So overall, the probability of a transcript that is not
doomed occurring is at most (ni + 2)/|F|.
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After the columns are revealed: The set of doomed transcripts excludes two kinds of tran-
scripts:

– Transcripts for which the committed matrix is (di − 1)/2-far and the code test
result computed according to the committed matrix is also (di − 1)/2-far, yet the
columns chosen to be revealed do not fail the column checks for the code test.
In this case, any response from the prover will disagree columnwise with the
committed matrix in at least (di − 1)/2 locations. This occurs with probability at

most ((
1+ρi

2 )ni
t )

/
(ni

t ).

– For the remaining transcripts, the doomed transcripts exclude the ones for which
the column checks for the linear and quadratic test that passes, even though the
witness encoded in the matrix does not satisfy the constraints. When this happens,
it must be the case that the result of either the linear or quadratic test must be at
least (2ρi)-far from the response computed according to the committed matrix.

Such transcripts can occur with probability at most (2ρini−2
t )

/
(ni

t ).

Putting it together, the RBR soundness of the Longfellow ZK protocol is given by:

εK = max
{

n1 + 2
|Fp|

,
n2 + 2

2128 ,(
( 1+ρ1

2 )n1

t

)/(
n1

t

)
+

(
2ρ1n1 − 2

t

)/(
n1

t

)
,(

( 1+ρ2
2 )n2

t

)/(
n2

t

)
+

(
2ρ2n2 − 2

t

)/(
n2

t

)
,

N
2128 ,

2
|Fp|

,
2

2128

}
(2)

Remark 2 (Statistical security of ZKIOP vs Computational security of the final protocol.). The
soundness error ϵsound

K from equation 1 is statistical (i.e. information-theoretic), namely, no unbounded
adversary can break the soundness in the IOP model with probability better than ϵsnd

K . Recall that the final
protocol applies the BCS-transformation to the IOP protocol, hence, it will only achieve a computational
soundness guarantee. In the next section, we will rely on the round-by-round knowledge soundness error
ϵK and analyze and identify λ with the following soundness guarantee: for every T and ν such that
there exists a T-time adversary that succeeds in breaking soundness with probability ν, referred to as
”Advantage”, it must hold that T

ν ≥ 2λ.

Zero-knowledge. For proving ZK, we define an efficient simulator S that produces an identi-
cally distributed view in the IOP model. Intuitively, this holds because the simulator defines the
Merkle hashes (which serve as commitments to the witnesses) as the IOP oracles for which the
verifier can only query a limited number of matrix columns. Consequently, the verifier learns no
information about the committed strings in the Merkle tree. S operates as follows:

1. Upon receiving the public statement x, the verification circuits C1(·, ·, ·) and C2(·, ·, ·), and
black-box access to a malicious verifier’s algorithm V∗ and the Ligero simulator SLIG, S
defines the circuits C̃1 and C̃2, and computes the sizes ℓ1 ← sz(C̃1) and ℓ2 ← sz(C̃2) and
further honestly chooses kp.
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2. S computes two fake augmented witnesses w′i ← (0|w|, padi) where where pad1 ← F
ℓ1
p and

pad2 ← GF(2128)ℓ2 .

3. S computes com1 ← LigeroCommit(w′1) and com2 ← LigeroCommit(w′2) over fields Fp and
GF(2128), respectively, and defines com1, com2 as oracle π1.

(a) S receives from V the value kv.

(b) S computes m← MACkv⊕kp(w) for a fake witness w, and sends to V .

4. S and V sequentially execute two instances of the protocol (PGKR,VGKR) with the corre-
sponding inputs C̃1, ((x, m, kv), (0|w1|, 0|w|, kp)) and C̃2, ((x, m, kv), (0|w2|, 0|w|, kp)) as follows:

• Whenever PGKR instructs the prover to send the ith message of length mi to VGKR, S
sends a random string t′i of that length.

• Whenever VGKR instructs the verifier to send the ith random challenge ri, S receives
from V∗ a challenge ri. If V∗ fails to send a string of the corresponding length, S
aborts the simulation.

At the end, S and V∗ hold a simulated sumcheck transcripts T′1 and T′2 for the instances
C̃1, ((x, m, kv), (0|w1|, 0|w|, kp)) and C̃2, ((x, m, kv), (0|w2|, 0|w|, kp)).

5. Define the circuit C′i(x, w′i, T′i ) to first decrypt the transcript T′i by subtracting out the pads
from padi, and then run VGKR(C′i((x, m, kv), T′i , (0|wi |, 0|w|, kp))).

6. Sequentially for i ∈ {1, 2}, S and V run in the IOP model, the protocol methods defined
by SLIG((C′i, (x, m, kv), T′i , comi), (0|wi |, 0|w|, kp)) and VLIG(C′i, (x, m, kv), T′i , comi) respectively,
concluding with V output the result.

We next prove the following claim,

Claim 4.1. The proof system from Figure 1 maintains a perfect honest verifier zero-knowledge guarantee
in the IOP model as per definition 2.4.

Note that the real and simulated views differ in two aspects. First, in the simulated view, the
commitment is generated with respect to an arbitrary string rather than to the actual padding
used in the real execution. Second, instead of running the real Ligero prover to demonstrate the
validity of the sumcheck protocol, the simulator invokes a simulated Ligero proof. We will prove
indistinguishability by reducing it to the security of these two objects.

Proof. Our proof proceeds via a hybrid argument denoted by H, defined by a simulator SH that
behaves identically to the real execution, except that it invokes the Ligero simulator in Step 6

instead of the real Ligero prover. Establishing that the distributed view produced in H is in-
distinguishable from the real execution follows directly from the privacy of the Ligero proof
system. In contrast, proving that the view generated by SH is indistinguishable from the final
simulated view relies on the hiding property of the Ligero commitment scheme. In both cases,
the statement is straightforward in the IOP model.

More specifically, we first claim that the hybrid execution is identically distributed to the real
execution. The only difference between the two executions lies in the invocation of the Ligero
subprotocol: either the real prover or the simulator is used. By the argument that the Ligero
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simulation in the IOP model induces a perfect honest-verifier simulation, we conclude that the
view generated within the Ligero execution is identical in both cases. Furthermore, since all other
components of the Longfellow protocol, including the first two commitments, verifier challenges,
and the padded sumcheck transcript, can be viewed as sampled independently of the witness
and of the Ligero transcript, the joint distribution of the entire hybrid execution remains identical
to that of the real execution.

It remains to show that the hybrid and simulated executions are identical. The only difference
between these two executions concerns the committed message: in the simulated execution, the
simulator commits to an arbitrary string, whereas in the hybrid execution, it commits to the cor-
rect padding (the correct witness w and the string that masks a correct sumcheck transcript). We
prove indistinguishability by relying on the hiding property of the Ligero commitment scheme.
Recall that the hiding property of the Ligero commitment follows directly from the combination
of the random masking polynomial and the privacy of the underlying packed secret sharing
scheme. In Ligero, the prover encodes the witness using a Reed–Solomon code and adds a
uniformly random masking polynomial before committing. This ensures that the encoded code-
words, and any evaluations revealed during verification, are uniformly distributed and indepen-
dent of the witness. Interpreting the Reed–Solomon encoding as a form of packed secret sharing,
its privacy property further guarantees that revealing a bounded number of columns discloses
no information about the shared secrets. Together, these two mechanisms imply that the Ligero
commitment is perfectly hiding: any two commitments to witnesses of the same length are iden-
tically distributed. Consequently, the hybrid and simulated views are identically distributed.

This completes the proof.

4.1 Auxiliary Proofs

Theorem 4.3. Suppose Ligero uses a Reed-Solomon code L of length n, rate ρ < 1/2, and minimum
distance d over the field F, and t columns of the matrix U are queried. If the code test is accepted, except
with probability at most (

( 1+ρ
2 )n
t

)/(
n
t

)
+

n + 1
|F|

there exists a unique matrix V such that each of the rows of V are valid Reed-Solomon codewords, U and
V differ in at most (d− 1)/2 coordinates and U and V coincide in the queried columns.

Proof. Recall that in the Ligero code test, the prover is challenged to send a random linear com-
bination r⊤U of the rows of the committed matrix U. The prover responds to this challenge with
a vector v (purportedly r⊤U). We assume v ∈ L (otherwise the proof is rejected). Then, there
are two possibilities, depending on how close v is (in Hamming distance) to the actual linear
combination r⊤U: either 1. r⊤U and v coincide in at most a fraction 1+ρ

2 of the coordinates (i.e.
d(r⊤U, v) ≥ (1− 1+ρ

2 )n ); or 2. they coincide in more, i.e. d(r⊤U, v) ≤ (1− 1+ρ
2 )n. We analyze

these cases separately.

1. If d(r⊤U, v) ≥ (1− 1+ρ
2 )n: in this case, note that in Ligero, the verifier queries t columns

of U, compares r⊤U and v on those coordinates, and rejects if they are different from each
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other. Hence, the only possibility that cheating is not detected is that the verifier queries
t coordinates that coincide. But r⊤U and v coincide in at most ( 1+ρ

2 )n coordinates, So the
probability of this happening (and hence cheating not being detected) is at most(

( 1+ρ
2 )n
t

)/(
n
t

)

2. If d(r⊤U, v) ≤ (1− 1+ρ
2 )n, then, since v ∈ L

d(r⊤U, L) ≤
(

1− 1 + ρ

2

)
n =

1− ρ

2
n =

d− 1
2

where d := dmin(L) is the minimum distance of L. In these conditions, the results on
proximity testing [BCI+20] guarantee that, except with probability n

|F| there exists a matrix

V ∈ Lm with d(U, V) ≤ d−1
2 , i.e. there exists a matrix V all of whose rows are codewords

and which differs in at most d−1
2 columns from U. Since dmin(Lm) = dmin(L) = d, coding

theoretic properties ensure this V is unique. Moreover, [ACFY25, Lemma 4.10] ensures
that the stronger property of correlated mutual agreement always holds in the case where
d(r⊤U, L) ≤ d−1

2 ; in a nutshell, this property states that if V exists, then U and V differ in
the same set of positions as r⊤U differs from v. Moreover, [ACFY25, Lemma 4.13] shows
that mutual correlated agreement implies that V is such that r⊤V = v.

Therefore applying the union bound, we have that except with probability at most(
( 1+ρ

2 )n
t

)/(
n
t

)
+

n
|F| ,

if the verifier accepts the proof then, restricted to the t coordinates that the verifier queries, r⊤V
and r⊤U coincide. In turn, this implies U and V coincide in all those coordinates except with
probability at most 1/|F|. Applying the union bound again yields the result.

Theorem 4.4. In the conditions of Theorem 4.3, suppose the matrix V promised by the theorem exists.
Then, except with probability (

2ρn− 2
t

)/(
n
t

)
+

1
|F|

if the linear and quadratic tests of Ligero pass, the inputs encoded by V satisfy the tested circuit.

Proof. Let us assume that the inputs encoded by V do not satisfy (at least) one of the tested
circuits, either the linear or the quadratic. We will bound the probability of the prover passing
this test (if V does not satisfy both tests, we just fix one of them).

Both tests (linear and quadratic) of Ligero have in common that the prover is requested to
reveal a certain polynomial (different for each of the tests) of degree at most 2k− 2, where k is
the dimension of the code, i.e., k = ρn, and which depends on the polynomials associated with
the rows of V, the statement, and on randomness chosen by the verifier.

Moreover, in both of the tests, once the prover announces the polynomial pV , the verifier
performs two checks:
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1. A check that pV is constructed correctly from the encoding matrix V; this is done by using
the t columns of V and checking these are consistent with the evaluations of pV .

2. A test that the inputs encoded by pV satisfy the relation tested (namely, the linear relation
or quadratic relation in either test).

For the test that we have fixed that V does not satisfy, the prover can do two different things
in order to attempt to pass the test:

• Reveal the polynomial pV constructed honestly from V. In this case, test 2. above fails
except with probability 1/|F|. See [AHIV17] for the details.

• Reveal a polynomial q which is different from the pV constructed honestly from V. Then q
and pV can coincide in at most 2k− 2 positions. The verifier only accepts test 1. above if
the t queried positions are among those 2k− 2. The probability of this is(

2k− 2
t

)/(
n
t

)
.

Therefore, the test will reject except with probability(
2k− 2

t

)/(
n
t

)
+

1
|F| ,

and recall k = ρn. Note that this holds as soon as the inputs encoded by V do not satisfy one
of the tested circuits. If it does not satisfy both, then the probability that the prover gets caught is
at least the probability that it gets caught in one of them. Hence the bound(

2ρn− 2
t

)/(
n
t

)
+

1
|F|

for the soundness error still holds in that case.

5 The Fiat-Shamir Heuristic: From ZKIOP to ZKSNARK

In the previous section, we analyzed the protocol in the interactive oracle proof (IOP) model.
To make it succinct and non-interactive, Longfellow ZK applies the BCS [BCS16] transforma-
tion, which uses Merkle trees to implement the vector commitment (or proof oracle), and the
well-known Fiat–Shamir transformation. While this transformation is straightforward for three-
message protocols, it is more nuanced for multi-round protocols such as the Longfellow ZK.
For the transformation to preserve soundness in the multi-round setting, the underlying inter-
active proof must satisfy a stronger property known as round-by-round soundness, which was
analyzed in the previous section.

The formal definition of this transformation and a rigorous security analysis are given in
[CY24]. Formally, we get the following theorem
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Theorem 5.1. Let Π be the Longfellow Protocol, and let εK be its round-by-round knowledge error. Let
Π′ be the compiled scheme after applying the BSC+Fiat-Shamir transformation with a random oracle that
outputs κ bits. Then, Π′ has adaptive knowledge error εARG against T-size adversaries where

εARG(T) ≤ T · εK +
9
2
· T2

2κ
.

We remark that the theorem above differs from the corresponding result in [CY24]. The theo-
rem in [CY24] is stated in terms of the state-restoration error of the scheme, where the first term
in the expression is replaced with the state-restoration soundness error. State-restoration sound-
ness is strictly weaker than (and implied by) round-by-round knowledge soundness (see [CY24,
Chapter 31]). In particular, the theorem presented in [CY24] demonstrates that the state restora-
tion (knowledge) soundness error is bounded by (T + ℓ) · εK, where ℓ is the round complexity of
the protocol and ϵK is the round-by-round soundness error.

In the theorem stated above, we are able to eliminate the dependency on the round complexity
ℓ and use T · εK instead of (T + ℓ) · εK. This additional factor arises because any Fiat–Shamir
query to the random oracle can correspond to a query for any of the ℓ rounds. In contrast, in
the Longfellow protocol, each query to the random oracle can be uniquely associated with a
specific protocol transcript and a specific round. This uniqueness is ensured by embedding the
message type and length into the query string. Consequently, by closely examining the proof of
the Fiat–Shamir theorem in [CY24], we observe that the ℓ factor in the soundness error can be
eliminated.

5.1 White-Box Attacks on Fiat-Shamir

The theorem above guarantees unconditional security in the random oracle model. In this model,
the Fiat–Shamir hash function is treated as a truly random function, with both the malicious
prover and the verifier having oracle access to it. To deploy the scheme in practice, the random
oracle is instantiated using a concrete hash function.

However, a line of work highlights the risks of replacing a random oracle with a concrete
hash function, regardless of the implementation [CGH04, Bar01, GK03, BBH+]. These attacks,
often called “white-box” attacks, as they exploit the circuit representation of the hash function,
a scenario that cannot occur in the idealized random oracle model. More recently, [KRS25]
presented a white-box attack on the Fiat–Shamir transformation targeting schemes based on the
GKR protocol.

The Longfellow protocol mitigates these attacks in several ways:

1. Specialized computation: The attacks exploit the fact that general-purpose proof systems
can encode circuits that compute the Fiat–Shamir hash itself. In contrast, the Longfellow
protocol is designed for a specific computation, which naturally avoids such self-referential
circuits.

2. High-complexity hash functions: Following the suggestion in [KRS25], the Fiat–Shamir
hash function in Longfellow is chosen to have greater circuit depth and a higher gate count
than the circuit being proven. This prevents the circuit from computing the hash, thwarting
the main mechanism of the white-box attacks.
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3. Integrated proof-of-work: In addition, the Longfellow protocol incorporates the defense
mechanism from the XFS protocol [AY25], which attaches a strong proof-of-work to the Fiat-
Shamir hash. This further increases the circuit’s computational complexity, making attacks
significantly harder. Several constructions of this proof-of-work are possible. In the case
of the Longfellow protocol, since the verifier’s runtime is not the bottleneck, one can im-
plement it by appending a long suffix of 0-bytes to the hash, proportional to the transcript
size. By appending the 0-bytes as a suffix, precomputation or compression is prevented,
making it infeasible for the circuit to compute their hash.

5.2 SNARKs with Everlasting Privacy

Everlasting privacy is a notion of privacy for the prover that, like zero knowledge, ensures that the
verifier learns nothing beyond the validity of the statement being proven. However, everlasting
privacy strengthens this guarantee by protecting the prover’s privacy even against computation-
ally unbounded adversaries. In this setting, the adversary may have unlimited computational
power and may also make an unbounded number of queries to the random oracle.

It is known that standard zero-knowledge proofs for SNARKs cannot withstand unbounded
adversaries. The reason is that any proof for zero-knowledge must rely on a programmable random
oracle. In such proofs, the simulator programs the oracle at a certain point. While this program-
ming is undetectable to any efficient adversary, an unbounded adversary can exhaustively query
the entire oracle domain and thereby detect the points at which the simulator performed this pro-
gramming. Consequently, the zero-knowledge property cannot be maintained in the presence of
unbounded adversaries.

To address this limitation, one can consider a weaker privacy notion known as witness in-
distinguishability (WI). Witness indistinguishability requires that proofs generated using any
two valid witnesses for the same statement are indistinguishable. Unlike zero knowledge, the
proof of witness indistinguishability does not rely on programmable random oracles and can
therefore tolerate unbounded adversaries. This leads to the notion of everlasting witness indis-
tinguishability (everlasting WI), which guarantees that the witness’s privacy is preserved even if
the adversary later gains unbounded computational power.

The proof of everlasting WI is similar to the proof of zero-knowledge. The main difference
is that in the zero-knowledge proof, the simulator programs the random oracle to output a
specific random string (provided by the simulator of the underlying IP). In WI, we move to an
unbounded simulator that inverts the random oracle on a given output, instead of programming
it. Since the simulator is inefficient, the end result is not a simulation-based definition, but rather
an indistinguishability one. The proof of everlasting witness indistinguishability (WI) follows a
structure similar to that of the standard zero-knowledge proof. The key difference lies in how
the random oracle is handled. In the zero-knowledge setting, the simulator must program the
random oracle to output a specific value specified by the simulator of the underlying interactive
proof. In contrast, in the everlasting WI setting, an unbounded simulator is used, which can
efficiently invert the random oracle on a given output, rather than programming it. As this
simulator is computationally unbounded, the resulting privacy notion that is derived is not via a
simulation, but rather through an indistinguishability-based one: namely, that proofs generated
using any two witnesses are indistinguishable, even to an unbounded adversary.
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5.3 Further Security Layers

While the construction already includes all standard security mechanisms required for SNARKs,
it is possible to incorporate additional defenses that further strengthen the protocol.

Domain separation. One such layer is the use of domain separation in all oracle queries. In
this approach, each oracle query is prefixed (or suffixed) with structured metadata identifying its
specific role within the protocol. For example, in Merkle tree computations, the input to the hash
function can be prefixed with both the layer number and the node index within that layer. This
ensures that hash evaluations across distinct contexts are derived from disjoint input domains.
As a result, any collision found for a particular query, such as a single leaf in the tree, cannot be
reused in another layer, node, or any other context. This reduces the potential impact of finding
collisions, where the overall effect of any single collision on the protocol’s security is negligible.

Grinding. A second technique, known as grinding, allows adding a small number of security
bits to the round-by-round soundness error. When we apply grinding, we require the honest
prover to perform a mildly hard proof-of-work after each message of the protocol. The difficulty
of this proof-of-work is governed by a grinding parameter zi for round i. For example, if the
prover wants to send message mi at round i of the IOP, then it will send mi, si for some nonce
si such that the Fiat-Shamir hash begins with zi 0’s. The remaining bits of the hash are used to
derive randomness for the next round. This mechanism effectively reduces the computational
advantage of a cheating prover while only slightly increasing the honest prover’s running time.
The reason is that the honest prover must solve the proof-of-work only once (per round), whereas
a cheating prover, who must attempt many potential proofs to find a false one, needs to solve
multiple independent proof-of-work instances.

Suppose we introduce grinding parameters z1, . . . , zℓ for a ℓ-round IOP. In each round i, the
prover must, on average, spend 2zi time to find a suitable nonce si. Hence, the total prover
runtime increases by an additive factor of ∑i∈[ℓ] 2zi . From the security perspective, grinding
directly reduces the round-by-round soundness error. Specifically, if the original error in round
i is ε i, then after adding grinding with parameter zi, the prover must also ensure that the first
zi bits of the randomness are zero. This effectively reduces the success probability by a factor of
2−zi , yielding a new error of ε i · 2−zi .

Formally, we have the following theorem:

Theorem 5.2 ([Sta21, Theorem 6]). Fix any ℓ-round IOP with round-by-round soundness ε1, . . . , εℓ,
Then, for any grinding parameters z1, . . . , zℓ, after grinding the resulting IOP has round-by-round sound-
ness error ε1 · 2−z1 , . . . , εℓ · 2−zℓ .

The most effective point to apply the grinding technique is during the query phase. Suppose
we aim for a security level of 128 bits; this means that the underlying IOP must have a soundness
error of at most 2−128. In the query phase, each query contributes a certain number of bits
of security, depending on the code rate ρ and the best-known proximity gap theorems. This
optimization reduces both the size of the SNARK (since there are fewer authentication paths)
and the verifier’s computational complexity.

Another effective point to apply grinding is in the sumcheck rounds. In each round of the
sumcheck protocol, the soundness error is roughly d/q, where d is the polynomial degree and q
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is the field size. If we work over a field of size q = 2128 and aim for 128-bit security, this per-round
error falls short of the target. How can we reconcile this gap?

One approach is to increase the field size by using a higher-degree field extension, thereby
increasing q. While this achieves the desired soundness, it significantly increases the prover’s
runtime, the proof size, and the verifier’s cost. A more efficient alternative is to introduce a
grinding parameter zi = log d for each round i of the sumcheck protocol. This reduces the error
to (d/q) · 2−zi = 1/q, achieving full 128-bit security without enlarging the field. This approach
preserves the same extension field and prover runtime, adding only a small additive cost for
computing the proof of work—typically negligible compared to the overall proving time.

6 Parameter Selection

As discussed in the previous section, if the round-by-round knowledge error of the ZKIOP is εK,
then the knowledge error of the protocol under the BCS-transformation is at most

T · εK +
9
2
· T2

2256

For the Longfellow ZK, the round-by-round knowledge error εK of the corresponding ZKIOP
is given in Theorem 4.1.

We analyze concrete security based on the parameters in the open source implementation:

• p ≃ 2256

• n1 = 2945 and n2 = 4096

• We assume N ≤ 213

In these conditions, for the target security of 2−115, we observe that for T < 2128 we have
T/2256 < 2−128, so it suffices to ensure the RBR error εK < 2−115. The round with the maximum
RBR soundness error is after the columns are revealed, namely.

εK = max

{(
( 1+ρ1

2 )n1

t

)/(
n1

t

)
+

(
2ρ1n1 − 2

t

)/(
n1

t

)
,
(
( 1+ρ2

2 )n2

t

)/(
n2

t

)
+

(
2ρ2n2 − 2

t

)/(
n2

t

)}

More precisely, by opening t columns in the Ligero proof system, we target 115-bit security
for the Longfellow ZK system, where the definition of λ-bit security says that for every T and ν
such that there exists a T-time adversary that succeeds in breaking soundness with probability
ν, referred to as “Advantage”, it must hold that T

ν ≥ 2λ.
In the following table, we collect values of the minimum t (the number of opened columns)

needed in Ligero to achieve εK ≤ 2−115 for several ρ = ρ1 = ρ2, which in turn will guarantee
λ > 115.

The actual parameters chosen by Longfellow ZK are ρ = 1/7 and 140 queries, and thus, we
are able to conclude that these parameters guarantee 115 bits of security.
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εK ≤ 2−115

ρ = 1/4 166
ρ = 1/6 145
ρ = 1/7 140∗

ρ = 1/8 136

Figure 2: Minimum t to achieve soundness error εK when Reed-Solomon codes of rate ρ are used.
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25] Eli Ben-Sasson, Dan Carmon, Ulrich Haböck, Swastik Kopparty, and Shubhangi Saraf.

On proximity gaps for reed–solomon codes. IACR Cryptol. ePrint Arch., page 2055,
2025.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity gaps for reed-solomon codes. In FOCS, 2020.

24



[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, TCC, pages 31–60, 2016.
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