Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Ron J. Weiss Quan Wang Yu Zhang Ye Jia

- computed from reference utterance

		Train on VCTK			Train on Lik	
System	Speaker set	MOS-nat	MOS-sim	SV-EER	MOS-nat	MOS
Ground truth	Seen	4.43	_	_	4.49	
Ground truth	Unseen	4.49	4.67	1.5%	4.42	4.3
Lookup table	Seen	4.12	4.17	1.2%	3.90	3.7
Proposed	Seen	4.07	4.22	1.6%	3.89	3.2
Proposed	Unseen	4.20	3.28	10.5%	4.12	3.0
Proposed	Cross dataset	4.28	1.82	29.2%	4.01	2.7

- need to train synthesizer on many speakers

Jonathan Shen

Zhifeng Chen Fei Ren

Google

{jiaye,ngyuzh,ronw}@google.com

Patrick Nguyen

Ruoming Pang

Ignacio Lopez Moreno

- frequency and speaking rate

9. References

- arXiv:1802.06006, 2018.
- arXiv preprint arXiv:1802.06984, 2018
- spectrogram predictions. In Proc. ICASSP, 2018.
- *ICASSP*, 2018.

Yonghui Wu

• Synthesize text conditioned on randomly sampled speaker embeddings • All samples contain consistent phonetic content, but varied fundamental

• Fictitious speakers speakers are distinct from training speakers

[1] S. O. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. Neural voice cloning with a few samples. arXiv preprint

[2] E. Nachmani, A. Polyak, Y. Taigman, and L. Wolf. Fitting new speakers based on a short untranscribed sample.

[3] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu. Natural TTS synthesis by conditioning WaveNet on mel

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. *CoRR abs/1609.03499*, 2016.

[5] L. Wan, Q. Wang, A. Papir, and I. L. Moreno. Generalized end-to-end loss for speaker verification. In *Proc.*