Summary
- Multi-speaker Tacotron 2 TTS network conditioned on speaker embedding computed from reference utterance.
- Similar to [1, 2] except focus on transfer from pre-trained speaker encoder.
- Make efficient use of available training data.
 - untranscribed and noisy audio to train speaker encoder.
 - smaller dataset of clean speech to train synthesizer.
- Generalizes better than joint training only using clean speech dataset.
- Allows zero-shot adaptation from ~5 second reference utterance.
 - although result is still distinguishable from real speech from that speaker.
- Performance improves with number of speaker encoder training speakers.

System architecture
- Speaker encoder computes speaker embedding from spectrogram.
 - stacked LSTM with 3 layers, embedding taken from output at final frame.
 - discriminatively trained on speaker verification task [4].
- Synthesizer generates mel spectrogram from input phoneme sequence.
 - sequence-to-sequence model with attention, based on Tacotron 2 [3].
- Vocoder inverts spectrogram to time-domain waveform.
 - conditional WaveNet [4], 30 dilated convolution layers.

Experiments
- Train speaker encoder on internal corpus of 39K hours from 18K speakers.
 - noisy and reverberant speech without transcripts.
- Train synthesizers and vocoders on clean, read speech from LibriSpeech (clean subset) 436 hours from ~1.2K speakers.
 - VCTK: 44 hours from 108 mostly British speakers.
 - hold out 10 speakers from training to evaluate adaptation to unseen speakers.
- Metrics:
 - Subjective mean opinion score ratings of speech naturalness (MOS-nat) and speaker similarity (MOS-sim).
 - Speaker verification equal error rate (SV-EER), measured using eval-only speaker encoder trained on separate dataset.

Results
- Speaker verification equal error rate (SV-EER) of 2.9% after enrolling 10 real LibriSpeech speakers and 10 synthetic versions.
 - but real and synthetic utterances consistently form distinct clusters (right).
 - Speaker embeddings: Real vs Synthetic speakers.
 - Female vs Male.
 - PCA, t-SNE.
 - Human, Synthetic.

Synthesis examples
- Speaker reference utterance:
 - "and his brothers and sisters stood round and listened with their mouths open".
- Synthesized mel spectrogram:
 - "this is a big red apple".

Transfer from speaker encoder
- Matched (LS-Clean) vs Mismatched.
 - MOS.
 - SV-EER.
 - MOS-nat MOS-sim SV-EER MOS-nat MOS-sim SV-EER.
 - 1.2K joint training speakers.
 - 1.2K joint training loss.
 - 2.4K LS-Other.
 - 2.4K LS-Other + VC.
 - 8.4K LS-Other + VC + VQ.

Fictitious speakers
- Synthesize text conditioned on randomly sampled speaker embeddings.
 - All samples consist of phonetic content, but varied fundamental frequency and speaking rate.
 - Fictitious speakers are distinct from training speakers.

References