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1. Summary

• Multispeaker Tacotron 2 TTS network conditioned on speaker embedding
computed from reference utterance

• Similar to [1, 2] except we focus on transfer from pretrained speaker encoder
• Make efficient use of available training data
• untranscribed and noisy audio to train speaker encoder
• smaller dataset of clean speech to train synthesizer

• Generalizes better than joint training only using clean speech dataset
• Allows zero-shot adaptation from ∼5 second reference utterance
• although result is still distinguishable from real speech from that speaker

• Performance improves with number of speaker encoder training speakers
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1. Speaker encoder computes speaker embedding from spectrogram
• stacked LSTM with 3 layers, embedding taken from output at final frame
• discriminatively trained on speaker verification task [5]

2. Synthesizer generates mel spectrogram from input phoneme sequence
• sequence-to-sequence model with attention, based on Tacotron 2 [3]

3. Vocoder inverts spectrogram to time-domain waveform
• conditional WaveNet [4], 30 dilated convolution layers

3. Experiments
• Train speaker encoder on internal corpus of 39K hours from 18K speakers
• noisy and reverberant speech without transcripts

• Train synthesizers and vocoders on clean, read speech from
LibriSpeech (clean subset) 436 hours from ∼1.2K speakers
VCTK 44 hours from 109 mostly British speakers
• hold out 10 speakers from training to evaluate adaptation to unseen speakers

• Metrics
• Subjective mean opinion score ratings of speech naturalness (MOS-nat)

and speaker similarity (MOS-sim)
• Speaker verification equal error rate (SV-EER), measured using

eval-only speaker encoder trained on separate dataset

4. Results
Train on VCTK Train on LibriSpeech

System Speaker set MOS-nat MOS-sim SV-EER MOS-nat MOS-sim SV-EER
Ground truth Seen 4.43 – – 4.49 – –
Ground truth Unseen 4.49 4.67 1.5% 4.42 4.33 0.9%
Lookup table Seen 4.12 4.17 1.2% 3.90 3.70 3.1%
Proposed Seen 4.07 4.22 1.6% 3.89 3.28 4.3%
Proposed Unseen 4.20 3.28 10.5% 4.12 3.03 5.1%
Proposed Cross dataset 4.28 1.82 29.2% 4.01 2.77 6.3%

• Proposed has similar performance to lookup-table baseline on seen speakers
• LibriSpeech generally has worse performance than VCTK

• Speaker similarity decreases (SV-EER increases) on unseen speakers
• but much smaller change for LibriSpeech than VCTK

• Model trained on LibriSpeech can generalize to VCTK speakers
• but does not transfer accents

=⇒ need to train synthesizer on many speakers

5. Synthesis examples
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Synthesized mel spectrogram

"this is a big red apple"
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Speaker reference utterance
"and all his brothers and sisters stood round and listened

with their mouths open"
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"but it will appear in the sequel that this exception is
much more obvious than substantial"
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"and the firebugs can't think o the right name something
like cendenaries"
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• Synthesize text using reference utterances from male (top), female (middle, bottom) speakers
• Different speaking rates and pitch/formant ranges, matching reference

6. Speaker embeddings: Real vs Synthetic speakers
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• Real and synthetic utterances from the same speaker (same color) are consistently close

• But real and synthetic utterances consistently form distinct clusters (right)
• SV-EER of 2.9% after enrolling 10 real LibriSpeech speakers and 10 synthetic versions
• i.e. synthetic utterances are nearly always closest to other synthetic utterances for the same speaker

=⇒ Synthesized speech resembles target speaker, but not well enough to be confusable with
real speech

Sound examples at
https://google.github.io/tacotron/publications/speaker_adaptation

7. Transfer from speaker encoder
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• Compare performance of synthesizer trained on LibriSpeech (LS)
conditioned on speaker encoder (SE) trained on different datasets
• evaluate on previously unseen speakers

• Jointly training SE and synthesizer doesn’t improve performance (left)
• Performance improves with number of SE training speakers (right)

8. Fictitious speakers
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• Synthesize text conditioned on randomly sampled speaker embeddings
• All samples contain consistent phonetic content, but varied fundamental

frequency and speaking rate
• Fictitious speakers speakers are distinct from training speakers
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