Android-cuttlefish cvd tool
Functions | Variables
rnnoise Namespace Reference

Functions

float TansigApproximated (float x)
 
float SigmoidApproximated (const float x)
 
float RectifiedLinearUnit (const float x)
 

Variables

const int8_t kInputDenseWeights [kInputLayerWeights]
 
const int8_t kInputDenseBias [kInputLayerOutputSize]
 
const int8_t kHiddenGruWeights [kHiddenLayerWeights]
 
const int8_t kHiddenGruRecurrentWeights [kHiddenLayerWeights]
 
const int8_t kHiddenGruBias [kHiddenLayerBiases]
 
const int8_t kOutputDenseWeights [kOutputLayerWeights]
 
const int8_t kOutputDenseBias [kOutputLayerOutputSize] = {-50}
 
const float kWeightsScale = 1.f / 256.f
 
const size_t kInputLayerInputSize = 42
 
const size_t kInputLayerOutputSize = 24
 
const size_t kInputLayerWeights = kInputLayerInputSize * kInputLayerOutputSize
 
const size_t kHiddenLayerOutputSize = 24
 
const size_t kHiddenLayerWeights
 
const size_t kHiddenLayerBiases = 3 * kHiddenLayerOutputSize
 
const size_t kOutputLayerOutputSize = 1
 
const size_t kOutputLayerWeights
 

Function Documentation

◆ RectifiedLinearUnit()

float rnnoise::RectifiedLinearUnit ( const float  x)
inline

◆ SigmoidApproximated()

float rnnoise::SigmoidApproximated ( const float  x)
inline

◆ TansigApproximated()

float rnnoise::TansigApproximated ( float  x)
inline

Variable Documentation

◆ kHiddenGruBias

const int8_t rnnoise::kHiddenGruBias
Initial value:
= {
124, 125, -57, -126, 53, 123, 127, -75, 68, 102, -2, 116,
124, 127, 124, 125, 126, 123, -16, 48, 125, 126, 78, 85,
11, 126, -30, -30, -64, -3, -105, -29, -17, 69, 63, 2,
-32, -10, -62, 113, -52, 112, -109, 112, 7, -40, 73, 53,
62, 6, -2, 0, 0, 100, -16, 26, -24, 56, 26, -10,
-33, 41, 70, 109, -29, 127, 34, -66, 49, 53, 27, 62}

◆ kHiddenGruRecurrentWeights

const int8_t rnnoise::kHiddenGruRecurrentWeights

◆ kHiddenGruWeights

const int8_t rnnoise::kHiddenGruWeights

◆ kHiddenLayerBiases

const size_t rnnoise::kHiddenLayerBiases = 3 * kHiddenLayerOutputSize

◆ kHiddenLayerOutputSize

const size_t rnnoise::kHiddenLayerOutputSize = 24

◆ kHiddenLayerWeights

const size_t rnnoise::kHiddenLayerWeights
Initial value:
=
const size_t kHiddenLayerOutputSize
Definition: rnn_vad_weights.h:20
const size_t kInputLayerOutputSize
Definition: rnn_vad_weights.h:14

◆ kInputDenseBias

const int8_t rnnoise::kInputDenseBias
Initial value:
= {
38, -6, 127, 127, 127, -43, -127, 78, 127, 5, 127, 123,
127, 127, -128, -76, -126, 28, 127, 125, -30, 127, -89, -20}

◆ kInputDenseWeights

const int8_t rnnoise::kInputDenseWeights

◆ kInputLayerInputSize

const size_t rnnoise::kInputLayerInputSize = 42

◆ kInputLayerOutputSize

const size_t rnnoise::kInputLayerOutputSize = 24

◆ kInputLayerWeights

const size_t rnnoise::kInputLayerWeights = kInputLayerInputSize * kInputLayerOutputSize

◆ kOutputDenseBias

const int8_t rnnoise::kOutputDenseBias = {-50}

◆ kOutputDenseWeights

const int8_t rnnoise::kOutputDenseWeights
Initial value:
= {
127, 127, 127, 127, 127, 20, 127, -126, -126, -54, 14, 125,
-126, -126, 127, -125, -126, 127, -127, -127, -57, -30, 127, 80}

◆ kOutputLayerOutputSize

const size_t rnnoise::kOutputLayerOutputSize = 1

◆ kOutputLayerWeights

const size_t rnnoise::kOutputLayerWeights
Initial value:
=
const size_t kOutputLayerOutputSize
Definition: rnn_vad_weights.h:29

◆ kWeightsScale

const float rnnoise::kWeightsScale = 1.f / 256.f