35 #ifndef RERANKER_MIRA_STYLE_MODEL_H_ 
   36 #define RERANKER_MIRA_STYLE_MODEL_H_ 
   46 #define DEFAULT_MIRA_CLIP 0.1 
   67     return score_diff == 0.0 ? 0 : (score_diff < 0.0 ? -1 : 1);
 
  114     initializers.
Add(
"mira_clip", &mira_clip_);
 
  126       const unordered_set<int> &gold_features,
 
  127       const unordered_set<int> &best_scoring_features,
 
  140     double raw_step = (loss_diff + score_diff) / vector_diff.
Dot(vector_diff);
 
  141     step_size_ = raw_step > mira_clip_ ? mira_clip_ : raw_step;
 
Provides the reranker::PerceptronModel reranker class. 
 
const Candidate & GetGold() const 
 
Model is an interface for reranking models. 
 
const string & name() const 
Returns the unique name for this model instance. 
 
virtual void RegisterInitializers(Initializers &initializers)
Registers one additional variable that may be initialized when this object is constructed via Factory...
 
double score() const 
Returns the reranker’s score for this candidate. 
 
const Candidate & GetBestScoring() const 
 
Provides the reranker::Symbols interface as well as the reranker::StaticSymbolTable implementation...
 
Symbols * symbols() const 
Returns the symbol table for this model. 
 
MiraStyleModel(const string &name, KernelFunction *kernel_fn)
 
virtual void RegisterInitializers(Initializers &initializers)
Registers several variables that may be initialized when this object is constructed via Factory::Crea...
 
void set_mira_clip(double mira_clip)
Sets the maximum value for a step size computed by ComputeStepSize. 
 
This class implements a perceptron model reranker. 
 
An inner interface specifying comparison between two Candidate instances. 
 
virtual int Compare(const Model &model, const Candidate &c1, const Candidate &c2)
Returns 0 if the two candidates’ scores are equal, less than zero if the score of c1 is less than tha...
 
virtual double ComputeStepSize(const unordered_set< int > &gold_features, const unordered_set< int > &best_scoring_features, const CandidateSet &example)
Computes the step size for the next update, and, as a side effect, caches this value in step_size_...
 
double loss_weight() const 
Returns the weight of the loss for this candidate set’s reference. 
 
void Add(const string &name, T *member, bool required=false)
 
A class to do “direct loss minimization” by considering the score of a candidate to be its raw score ...
 
#define DEFAULT_MIRA_CLIP
 
FeatureVector< K, V > & AddScaledSubvector(const Collection &feature_uids, const FeatureVector< K, V > &feature_vector, V scalar)
Modifies this vector so that it equals this vector plus the scaled specified subvector. 
 
A class to hold a set of candidates, either for training or test. 
 
An interface specifying a converter from symbols (strings) to int indices. 
 
virtual bool use_weighted_loss()
 
A class to represent a candidate in a set of candidates that constitutes a training instance for a re...
 
double loss() const 
Returns the loss of this candidate. 
 
double step_size_
The last value computed by the ComputeStepSize method. 
 
V Dot(const FeatureVector< K, V > &other) const 
Computes the dot product of this feature vector with the specified FeatureVector. ...
 
Provides the reranker::KernelFunction interface. 
 
A subclass of PerceptronModel that differs only in the way that the ComputeStepSize method is impleme...
 
An interface specifying a kernel function for two FeatureVector instances. 
 
MiraStyleModel(const string &name, KernelFunction *kernel_fn, Symbols *symbols)
 
A container for all the member initializers for a particular Factory-constructible instance...
 
MiraStyleModel(const string &name)
 
const FeatureVector< int, double > & features() const 
Returns the feature vector for this candidate.