Prompt Frontmatter

The frontmatter in Dotprompt files contains metadata and configuration for the prompt. It is defined using YAML syntax at the beginning of the file, enclosed between triple dashes (---).

Structure

---
# Frontmatter content goes here
---

Prompt template goes here.

All frontmatter fields are considered optional in a given .prompt file, as Dotprompt implementations may provide default values for any or all of them. If no frontmatter fields need to be specified in a given file, the frontmatter may be omitted entirely and only a prompt template provided.

Full Example

Here’s an example of a Dotprompt frontmatter:

---
name: greetingPrompt
variant: formal
model: googleai/gemini-1.5-flash
tools: 
  - timeOfDay
config:
  version: gemini-1.5-flash-latest
  temperature: 0.7
  topK: 20
  topP 0.8
  stopSequences:
    - STOPSTOPSTOP
input:
  default:
    name: Guest
  schema:
    name: string
    language?: string
output:
  format: json
  schema:
    greeting: string, the greeting to provide to the guest
    formalityLevel: number, the level of formality of your response
metadata:
  customKey:
    customValue: 123
---

Available Fields

name

  • Type: string
  • Description: The name of the prompt. If unspecified, inferred by the filename of the loaded prompt (e.g. myPrompt.prompt has an inferred name of myPrompt).

variant

  • Type: string
  • Description: The variant name for the prompt. If unspecified, inferred by the filename of the loaded prompt (e.g. myPrompt.variant1.prompt has inferred name of myPrompt and inferred variant of variant1).

model

  • Type: string or ModelArgument<Options>
  • Description: The name of the model to use for this prompt, e.g., googleai/gemini-1.5-flash-latest. The Dotprompt implementation is responsible for resolving a string model name to an executable model.

tools

  • Type: string[]
  • Description: Names of tools (registered in the Dotprompt implementation) to allow use of in this prompt.

config

  • Type: object
  • Description: Configuration to be passed to the model implementation as a Map<string,any>. The specific configuration options vary depending on the model implementation.
  • Common Config: Model implementations should respect the following config properties where applicable:
    • version:

      • Type: string
      • Description: While model specifies a model “family” (e.g. Gemini 1.5 Flash, Claude 3.5 Sonnet), version specifies a particular version/checkpoint of the model to use. This allows for version pinning and reproducibility of results.
      • Example: "gemini-1.5-pro-0801" or "v2"
    • temperature:

      • Type: number
      • Description: Controls the randomness of the model’s output. Higher values (e.g., 0.8) make the output more random, while lower values (e.g., 0.2) make it more deterministic.
      • Range: Typically between 0 and 1, depends on model implementation.
      • Example: 0.7
    • maxOutputTokens:

      • Type: number
      • Description: Limits the maximum number of tokens in the model’s response. This can help control the length of the generated text.
      • Example: 150
    • topK:

      • Type: number
      • Description: Limits the number of highest probability vocabulary tokens to consider at each step. This can help focus the model’s output on more likely tokens.
      • Example: 40
    • topP:

      • Type: number
      • Description: Sets a probability threshold for token selection. The model will only consider tokens whose cumulative probability exceeds this threshold.
      • Range: Typically between 0 and 1
      • Example: 0.95
    • stopSequences:

      • Type: string[]
      • Description: An array of strings that, if encountered, will cause the model to stop generating further output. This is useful for controlling where the model’s response should end.
      • Example: ["END", "\n\n", "User:"]

input

  • Type: object
  • Description: Defines the input variables the prompt. If input is not specified, the implementation should accept any Map<string,any> values as input and pass them to the prompt template.
  • Properties:
    • default:
      • Type: any
      • Description: Defines the default input variable values to use if none are provided. Input values passed from the implementation should be merged into these values with a shallow merge strategy.
    • schema:
      • Type: Schema
      • Description: Schema representing the input values for the prompt. Must correspond to a JSON Schema object type.

output

  • Type: object
  • Description: Defines the expected model output format.
  • Properties:
    • format:
      • Type: string
      • Common Values: json, text
      • Description: Desired output format for this prompt. Output formats are implementation-specific, but
    • schema:
      • Type: Schema
      • Description: Schema representing the expected output from the prompt. Must correspond to a JSON Schema object type.

metadata

  • Type: Map<string, any>
  • Description: Arbitrary metadata to be used by code, tools, and libraries.

Frontmatter Extensions

In the frontmatter, Dotprompt implementations will automatically collect namespaced fields (i.e. fields with a . in them) into a special ext property on the resulting metadata. For example, the following frontmatter:

---
config:
  temperature: 3
mycorp.auth:
  type: FIREBASE
  role: admin # only admins can use this
mycorp.ownerId: 12345
mycorp.subunit.level: 5
---

Would be parsed into this equivalent metadata:

{
  config: {temperature: 3},
  ext: {
    mycorp: {
      auth: {
        type: 'FIREBASE',
        role: 'admin',
      },
      ownerId: 12345,
    },
    'mycorp.subunit': {
      level: 5,
    },
  }
}

Note that nested namespaces are flattened into dotted keys to avoid conflicts between nested properties and nested namespaces.