Prompt Frontmatter
The frontmatter in Dotprompt files contains metadata and configuration for the prompt. It is defined using YAML syntax at the beginning of the file, enclosed between triple dashes (---
).
Structure
---
# Frontmatter content goes here
---
Prompt template goes here.
All frontmatter fields are considered optional in a given .prompt
file, as Dotprompt implementations may provide default values for any or all of them. If no frontmatter fields need to be specified in a given file, the frontmatter may be omitted entirely and only a prompt template provided.
Full Example
Here’s an example of a Dotprompt frontmatter:
---
name: greetingPrompt
variant: formal
model: googleai/gemini-1.5-flash
tools:
- timeOfDay
config:
version: gemini-1.5-flash-latest
temperature: 0.7
topK: 20
topP 0.8
stopSequences:
- STOPSTOPSTOP
input:
default:
name: Guest
schema:
name: string
language?: string
output:
format: json
schema:
greeting: string, the greeting to provide to the guest
formalityLevel: number, the level of formality of your response
metadata:
customKey:
customValue: 123
---
Available Fields
name
- Type:
string
- Description: The name of the prompt. If unspecified, inferred by the filename of the loaded prompt (e.g.
myPrompt.prompt
has an inferred name ofmyPrompt
).
variant
- Type:
string
- Description: The variant name for the prompt. If unspecified, inferred by the filename of the loaded prompt (e.g.
myPrompt.variant1.prompt
has inferred name ofmyPrompt
and inferred variant ofvariant1
).
model
- Type:
string
orModelArgument<Options>
- Description: The name of the model to use for this prompt, e.g.,
googleai/gemini-1.5-flash-latest
. The Dotprompt implementation is responsible for resolving a string model name to an executable model.
tools
- Type:
string[]
- Description: Names of tools (registered in the Dotprompt implementation) to allow use of in this prompt.
config
- Type:
object
- Description: Configuration to be passed to the model implementation as a
Map<string,any>
. The specific configuration options vary depending on the model implementation. - Common Config: Model implementations should respect the following config properties where applicable:
-
version
:- Type:
string
- Description: While
model
specifies a model “family” (e.g. Gemini 1.5 Flash, Claude 3.5 Sonnet),version
specifies a particular version/checkpoint of the model to use. This allows for version pinning and reproducibility of results. - Example:
"gemini-1.5-pro-0801"
or"v2"
- Type:
-
temperature
:- Type:
number
- Description: Controls the randomness of the model’s output. Higher values (e.g.,
0.8
) make the output more random, while lower values (e.g.,0.2
) make it more deterministic. - Range: Typically between 0 and 1, depends on model implementation.
- Example:
0.7
- Type:
-
maxOutputTokens
:- Type:
number
- Description: Limits the maximum number of tokens in the model’s response. This can help control the length of the generated text.
- Example:
150
- Type:
-
topK
:- Type:
number
- Description: Limits the number of highest probability vocabulary tokens to consider at each step. This can help focus the model’s output on more likely tokens.
- Example:
40
- Type:
-
topP
:- Type:
number
- Description: Sets a probability threshold for token selection. The model will only consider tokens whose cumulative probability exceeds this threshold.
- Range: Typically between 0 and 1
- Example:
0.95
- Type:
-
stopSequences
:- Type:
string[]
- Description: An array of strings that, if encountered, will cause the model to stop generating further output. This is useful for controlling where the model’s response should end.
- Example:
["END", "\n\n", "User:"]
- Type:
-
input
- Type:
object
- Description: Defines the input variables the prompt. If
input
is not specified, the implementation should accept anyMap<string,any>
values as input and pass them to the prompt template. - Properties:
default
:- Type:
any
- Description: Defines the default input variable values to use if none are provided. Input values passed from the implementation should be merged into these values with a shallow merge strategy.
- Type:
schema
:- Type: Schema
- Description: Schema representing the input values for the prompt. Must correspond to a JSON Schema
object
type.
output
- Type:
object
- Description: Defines the expected model output format.
- Properties:
format
:- Type:
string
- Common Values:
json
,text
- Description: Desired output format for this prompt. Output formats are implementation-specific, but
- Type:
schema
:- Type: Schema
- Description: Schema representing the expected output from the prompt. Must correspond to a JSON Schema
object
type.
metadata
- Type:
Map<string, any>
- Description: Arbitrary metadata to be used by code, tools, and libraries.
Frontmatter Extensions
In the frontmatter, Dotprompt implementations will automatically collect namespaced fields (i.e. fields with a .
in them) into a special ext
property on the resulting metadata. For example, the following frontmatter:
---
config:
temperature: 3
mycorp.auth:
type: FIREBASE
role: admin # only admins can use this
mycorp.ownerId: 12345
mycorp.subunit.level: 5
---
Would be parsed into this equivalent metadata:
{
config: {temperature: 3},
ext: {
mycorp: {
auth: {
type: 'FIREBASE',
role: 'admin',
},
ownerId: 12345,
},
'mycorp.subunit': {
level: 5,
},
}
}
Note that nested namespaces are flattened into dotted keys to avoid conflicts between nested properties and nested namespaces.