Common Model Interface

Dotprompt implementations are not required to conform to any specific structured interface for interacting with GenAI models. However, the Dotprompt reference implementation in Firebase Genkit leverages a common model interface that may be useful for other implementors to follow.

In the future, a Dotprompt “spec test” will be made available that exercises the various parts of Dotprompt and compares the results to this common model request format.

GenerateRequest

Full Example

{
  "messages": [
    {
      "role": "system",
      "content": [
        {"text": "You are a helpful AI assistant."}
      ]
    },
    {
      "role": "user",
      "content": [
        {"text": "Hello, can you help me with a task?"}
      ]
    },
    {
      "role": "model",
      "content": [
        {"text": "Of course! I'd be happy to help you with a task. What kind of task do you need assistance with? Please provide me with more details, and I'll do my best to help you."}
      ]
    },
    {
      "role": "user",
      "content": [
        {"text": "Can you analyze this image and tell me what you see?"},
        {
          "media": {
            "contentType": "image/jpeg",
            "url": "..."
          }
        }
      ]
    }
  ],
  "config": {
    "temperature": 0.7,
    "maxOutputTokens": 1000,
    "topK": 40,
    "topP": 0.95,
    "stopSequences": ["User:", "Human:"]
  },
  "tools": [
    {
      "name": "weather",
      "description": "Get the current weather for a location",
      "inputSchema": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The location to get weather for"
          }
        },
        "required": ["location"]
      },
      "outputSchema": {
        "type": "object",
        "properties": {
          "temperature": {
            "type": "number",
            "description": "The current temperature in Celsius"
          },
          "condition": {
            "type": "string",
            "description": "The current weather condition"
          }
        },
        "required": ["temperature", "condition"]
      }
    }
  ],
  "output": {
    "format": "json",
    "schema": {
      "type": "object",
      "properties": {
        "analysis": {
          "type": "string",
          "description": "A detailed analysis of the image"
        },
        "objects": {
          "type": "array",
          "items": {
            "type": "string"
          },
          "description": "A list of objects identified in the image"
        }
      },
      "required": ["analysis", "objects"]
    }
  },
  "context": [
    {
      "id": "doc1",
      "content": [{"text": "This is some context information that might be relevant to the task."}],
      "metadata": {
        "source": "user-provided"
      }
    }
  ]
}

Properties

messages

  • Type: array of Message objects.
  • Description: The conversation history and current prompt.

config

  • Type: ModelConfig
  • Description: Configuration options for the model.

tools

  • Type: array of ToolDefinition
  • Description: Definitions of tools available to the model.

output

  • Type: Output
  • Description: Specification for the desired output format.

context

  • Type: array of Document
  • Description: Grounding context documents for the model.

Message

A message represents a single “turn” in a multi-turn conversation. Each message must have a role and specified content.

Properties

role

  • Type: string
  • Description: The role of the message sender. Can be “system”, “user”, “model”, or “tool”.

content

  • Type: array of Part
  • Description: The content of the message, which can include text, media, tool requests, and tool responses.

metadata

  • Type: object
  • Description: Optional. Additional metadata for the message.

Part

A Part object can be one of the following types:

TextPart

text

  • Type: string
  • Description: The text content of the message.

MediaPart

media

  • Type: object
  • Description: Contains media information.

media.contentType

  • Type: string
  • Description: Optional. The media content type. Inferred from data URI if not provided.

media.url

  • Type: string
  • Description: A data: or https: URI containing the media content.

ToolRequestPart

toolRequest

  • Type: object
  • Description: A request for a tool to be executed.

toolRequest.ref

  • Type: string
  • Description: Optional. The call ID or reference for a specific request.

toolRequest.name

  • Type: string
  • Description: The name of the tool to call.

toolRequest.input

  • Type: any
  • Description: Optional. The input parameters for the tool, usually a JSON object.

ToolResponsePart

toolResponse

  • Type: object
  • Description: A provided response to a tool call.

toolResponse.ref

  • Type: string
  • Description: Optional. The call ID or reference for a specific request.

toolResponse.name

  • Type: string
  • Description: The name of the tool.

toolResponse.output

  • Type: any
  • Description: Optional. The output data returned from the tool, usually a JSON object.

ModelConfig

ModelConfig is an arbitrary Map<string,any> that depends on the specific implementation of the underlying model. However, the following common configuration options should be respected in implementation whenever applicable:

Common Config Properties

temperature

  • Type: number
  • Description: Optional. Controls the randomness of the model’s output.

maxOutputTokens

  • Type: number
  • Description: Optional. Limits the maximum number of tokens in the model’s response.

topK

  • Type: number
  • Description: Optional. Limits the number of highest probability vocabulary tokens to consider at each step.

topP

  • Type: number
  • Description: Optional. Sets a probability threshold for token selection.

stopSequences

  • Type: array of string
  • Description: Optional. Sequences that, if encountered, will cause the model to stop generating further output.

Tool Object

name

  • Type: string
  • Description: The name of the tool.

description

  • Type: string
  • Description: A description of what the tool does.

inputSchema

  • Type: object
  • Description: A JSON Schema object describing the expected input for the tool.

outputSchema

  • Type: object
  • Description: Optional. A JSON Schema object describing the expected output from the tool.

Output Object

format

  • Type: string
  • Description: Optional. The desired output format. All implementations should support json and text at a minimum.

schema

  • Type: object
  • Description: Optional. A JSON Schema object describing the expected structure of the output.

Document Object

id

  • Type: string
  • Description: A unique identifier for the document.

content

  • Type: string
  • Description: The text content of the document.

metadata

  • Type: object
  • Description: Optional. Additional metadata for the document.

Notes

  • The messages array represents the conversation history and current prompt. Each message can contain multiple parts, allowing for rich, multimodal interactions.
  • The config object allows fine-tuning of the model’s behavior. Not all models support all configuration options.
  • The tools array defines functions that the model can call during its execution. This enables the model to interact with external systems or perform specific tasks.
  • The output object specifies the desired format and structure of the model’s response. This is particularly useful for ensuring consistent, parseable outputs.
  • The context array provides additional information that may be relevant to the task but isn’t part of the direct conversation history.
  • The candidates field determines how many alternative responses the model should generate.

This interface provides a flexible and powerful way to interact with GenAI models, supporting various types of inputs, outputs, and model configurations.