Common Model Interface
Dotprompt implementations are not required to conform to any specific structured interface for interacting with GenAI models. However, the Dotprompt reference implementation in Firebase Genkit leverages a common model interface that may be useful for other implementors to follow.
In the future, a Dotprompt “spec test” will be made available that exercises the various parts of Dotprompt and compares the results to this common model request format.
GenerateRequest
Full Example
{
"messages": [
{
"role": "system",
"content": [
{"text": "You are a helpful AI assistant."}
]
},
{
"role": "user",
"content": [
{"text": "Hello, can you help me with a task?"}
]
},
{
"role": "model",
"content": [
{"text": "Of course! I'd be happy to help you with a task. What kind of task do you need assistance with? Please provide me with more details, and I'll do my best to help you."}
]
},
{
"role": "user",
"content": [
{"text": "Can you analyze this image and tell me what you see?"},
{
"media": {
"contentType": "image/jpeg",
"url": "..."
}
}
]
}
],
"config": {
"temperature": 0.7,
"maxOutputTokens": 1000,
"topK": 40,
"topP": 0.95,
"stopSequences": ["User:", "Human:"]
},
"tools": [
{
"name": "weather",
"description": "Get the current weather for a location",
"inputSchema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get weather for"
}
},
"required": ["location"]
},
"outputSchema": {
"type": "object",
"properties": {
"temperature": {
"type": "number",
"description": "The current temperature in Celsius"
},
"condition": {
"type": "string",
"description": "The current weather condition"
}
},
"required": ["temperature", "condition"]
}
}
],
"output": {
"format": "json",
"schema": {
"type": "object",
"properties": {
"analysis": {
"type": "string",
"description": "A detailed analysis of the image"
},
"objects": {
"type": "array",
"items": {
"type": "string"
},
"description": "A list of objects identified in the image"
}
},
"required": ["analysis", "objects"]
}
},
"context": [
{
"id": "doc1",
"content": [{"text": "This is some context information that might be relevant to the task."}],
"metadata": {
"source": "user-provided"
}
}
]
}
Properties
messages
- Type:
array
of Message objects. - Description: The conversation history and current prompt.
config
- Type: ModelConfig
- Description: Configuration options for the model.
tools
- Type:
array
of ToolDefinition - Description: Definitions of tools available to the model.
output
- Type: Output
- Description: Specification for the desired output format.
context
- Type:
array
of Document - Description: Grounding context documents for the model.
Message
A message represents a single “turn” in a multi-turn conversation. Each message must have a role and specified content.
Properties
role
- Type:
string
- Description: The role of the message sender. Can be “system”, “user”, “model”, or “tool”.
content
- Type:
array
of Part - Description: The content of the message, which can include text, media, tool requests, and tool responses.
metadata
- Type:
object
- Description: Optional. Additional metadata for the message.
Part
A Part
object can be one of the following types:
TextPart
text
- Type:
string
- Description: The text content of the message.
MediaPart
media
- Type:
object
- Description: Contains media information.
media.contentType
- Type:
string
- Description: Optional. The media content type. Inferred from data URI if not provided.
media.url
- Type:
string
- Description: A
data:
orhttps:
URI containing the media content.
ToolRequestPart
toolRequest
- Type:
object
- Description: A request for a tool to be executed.
toolRequest.ref
- Type:
string
- Description: Optional. The call ID or reference for a specific request.
toolRequest.name
- Type:
string
- Description: The name of the tool to call.
toolRequest.input
- Type:
any
- Description: Optional. The input parameters for the tool, usually a JSON object.
ToolResponsePart
toolResponse
- Type:
object
- Description: A provided response to a tool call.
toolResponse.ref
- Type:
string
- Description: Optional. The call ID or reference for a specific request.
toolResponse.name
- Type:
string
- Description: The name of the tool.
toolResponse.output
- Type:
any
- Description: Optional. The output data returned from the tool, usually a JSON object.
ModelConfig
ModelConfig
is an arbitrary Map<string,any>
that depends on the specific implementation of the underlying model. However, the following common configuration options should be respected in implementation whenever applicable:
Common Config Properties
temperature
- Type:
number
- Description: Optional. Controls the randomness of the model’s output.
maxOutputTokens
- Type:
number
- Description: Optional. Limits the maximum number of tokens in the model’s response.
topK
- Type:
number
- Description: Optional. Limits the number of highest probability vocabulary tokens to consider at each step.
topP
- Type:
number
- Description: Optional. Sets a probability threshold for token selection.
stopSequences
- Type:
array
ofstring
- Description: Optional. Sequences that, if encountered, will cause the model to stop generating further output.
Tool Object
name
- Type:
string
- Description: The name of the tool.
description
- Type:
string
- Description: A description of what the tool does.
inputSchema
- Type:
object
- Description: A JSON Schema object describing the expected input for the tool.
outputSchema
- Type:
object
- Description: Optional. A JSON Schema object describing the expected output from the tool.
Output Object
format
- Type:
string
- Description: Optional. The desired output format. All implementations should support
json
andtext
at a minimum.
schema
- Type:
object
- Description: Optional. A JSON Schema object describing the expected structure of the output.
Document Object
id
- Type:
string
- Description: A unique identifier for the document.
content
- Type:
string
- Description: The text content of the document.
metadata
- Type:
object
- Description: Optional. Additional metadata for the document.
Notes
- The
messages
array represents the conversation history and current prompt. Each message can contain multiple parts, allowing for rich, multimodal interactions. - The
config
object allows fine-tuning of the model’s behavior. Not all models support all configuration options. - The
tools
array defines functions that the model can call during its execution. This enables the model to interact with external systems or perform specific tasks. - The
output
object specifies the desired format and structure of the model’s response. This is particularly useful for ensuring consistent, parseable outputs. - The
context
array provides additional information that may be relevant to the task but isn’t part of the direct conversation history. - The
candidates
field determines how many alternative responses the model should generate.
This interface provides a flexible and powerful way to interact with GenAI models, supporting various types of inputs, outputs, and model configurations.
On This Page
- GenerateRequest
- Full Example
- Properties
- messages
- config
- tools
- output
- context
- Message
- Properties
- role
- content
- metadata
- Part
- TextPart
- text
- MediaPart
- media
- media.contentType
- media.url
- ToolRequestPart
- toolRequest
- toolRequest.ref
- toolRequest.name
- toolRequest.input
- ToolResponsePart
- toolResponse
- toolResponse.ref
- toolResponse.name
- toolResponse.output
- ModelConfig
- Common Config Properties
- temperature
- maxOutputTokens
- topK
- topP
- stopSequences
- Tool Object
- name
- description
- inputSchema
- outputSchema
- Output Object
- format
- schema
- Document Object
- id
- content
- metadata
- Notes