- tensorstore.DimExpression.translate_backward_by[self, offsets: Sequence[int | None] | int | None] DimExpression
Translates (shifts) the domains of the selected input dimensions backward by the specified offsets, without affecting the output range.
Examples
>>> transform = ts.IndexTransform(input_inclusive_min=[2, 3, 4], ... input_shape=[4, 5, 6], ... input_labels=['x', 'y', 'z']) >>> transform[ts.d['x', 'y'].translate_backward_by[10, 20]] Rank 3 -> 3 index space transform: Input domain: 0: [-8, -4) "x" 1: [-17, -12) "y" 2: [4, 10) "z" Output index maps: out[0] = 10 + 1 * in[0] out[1] = 20 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> transform[ts.d['x', 'y'].translate_backward_by[10, None]] Rank 3 -> 3 index space transform: Input domain: 0: [-8, -4) "x" 1: [3, 8) "y" 2: [4, 10) "z" Output index maps: out[0] = 10 + 1 * in[0] out[1] = 0 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> transform[ts.d['x', 'y'].translate_backward_by[10]] Rank 3 -> 3 index space transform: Input domain: 0: [-8, -4) "x" 1: [-7, -2) "y" 2: [4, 10) "z" Output index maps: out[0] = 10 + 1 * in[0] out[1] = 10 + 1 * in[1] out[2] = 0 + 1 * in[2]
The new dimension selection is the same as the prior dimension selection.
- Parameters:¶
- offsets: Sequence[int | None] | int | None¶
The offsets for each of the selected dimensions. May also be a scalar, e.g.
5
, in which case the same offset is used for all selected dimensions. SpecifyingNone
for a given dimension (equivalent to specifying an offset of0
) leaves the origin of that dimension unchanged.
- Returns:¶
Dimension expression with the translation operation added.
- Raises:¶
IndexError – If the number origins does not match the number of selected dimensions.