API reference¶
Core¶
- class tensorstore.TensorStore
Asynchronous multi-dimensional array handle.
- class tensorstore.Context
Manages shared TensorStore context resources, such as caches and credentials.
- class tensorstore.KvStore
Key-value store that maps an ordered set of byte string keys to byte string values.
- class tensorstore.Transaction
Transactions are used to stage a group of modifications (e.g. writes to
tensorstore.TensorStore
objects) in memory, and then either commit the group all at once or abort it.
- class tensorstore.Batch
Batches are used to group together read operations for potentially improved efficiency.
- tensorstore.open(spec: Spec | Any, *, ...) Future[TensorStore]
Opens or creates a
TensorStore
from aSpec
.
Indexing¶
-
tensorstore.inf : int =
4611686018427387903
Special constant equal to \(2^{62}-1\) that indicates an unbounded index domain.
- class tensorstore.IndexDomain
Domain (including bounds and optional dimension labels) of an N-dimensional index space.
- class tensorstore.IndexTransform
Represents a transform from an input index space to an output space.
- class tensorstore.Dim
1-d index interval with optionally-implicit bounds and dimension label.
- class tensorstore.OutputIndexMap
Represents an output index map for an index transform.
- class tensorstore.OutputIndexMaps
View of the output index maps for an index transform.
- class tensorstore.OutputIndexMethod
Indicates the output index method of an
OutputIndexMap
.
- class tensorstore.DimExpression
Specifies an advanced indexing operation.
- class tensorstore.d(DimExpression)
Specifies a dimension selection, for starting a dimension expression.
-
tensorstore.newaxis =
None
Alias for
None
used in indexing expressions to specify a new singleton dimension.
- class tensorstore.Indexable
Abstract base class for types that support TensorStore indexing operations.
Spec¶
- class tensorstore.Spec
Specification for opening or creating a
TensorStore
.
- class tensorstore.Schema
Driver-independent options for defining a TensorStore schema.
- class tensorstore.CodecSpec
Specifies driver-specific encoding/decoding parameters.
- class tensorstore.OpenMode
Specifies the mode to use when opening a
TensorStore
.
- class tensorstore.ChunkLayout
Describes the storage layout of a
tensorstore.TensorStore
.
- class tensorstore.Unit
Specifies a physical quantity/unit.
- tensorstore.RecheckCacheOption
Determines under what circumstances cached data is revalidated.
Views¶
- tensorstore.cast(base: TensorStore, dtype: dtype) TensorStore
Returns a read/write view with the data type converted.
- tensorstore.array(array: ArrayLike, ...) TensorStore
Returns a TensorStore that reads/writes from an in-memory array.
- tensorstore.overlay(layers, ...) TensorStore
Virtually overlays a sequence of
TensorStore
layers within a common domain.
- tensorstore.stack(layers, ...) TensorStore
Virtually stacks a sequence of
TensorStore
layers along a new dimension.
- tensorstore.concat(layers, ...) TensorStore
Virtually concatenates a sequence of
TensorStore
layers along an existing dimension.
- tensorstore.downsample(base: TensorStore, ...) TensorStore
Returns a virtual downsampled view of a
TensorStore
.
- tensorstore.downsample(base: Spec, downsample_factors, ...) Spec
Returns a virtual downsampled view view of a
Spec
.
Virtual views¶
- class tensorstore.VirtualChunkedReadParameters
Options passed to read callbacks used with
virtual_chunked
.
- class tensorstore.VirtualChunkedWriteParameters
Options passed to write callbacks used with
virtual_chunked
.
- tensorstore.virtual_chunked(...) TensorStore
Creates a
TensorStore
where the content is read/written chunk-wise by an arbitrary function.
Data types¶
- class tensorstore.dtype
TensorStore data type representation.
-
tensorstore.bool : dtype =
dtype("bool")
Boolean data type (0 or 1). Corresponds to the
bool
type andnumpy.bool_
.
-
tensorstore.int4 : dtype =
dtype("int4")
4-bit signed two’s-complement integer data type, internally stored as its 8-bit signed integer equivalent (i.e. sign-extended). Corresponds to
jax.numpy.int4
.
-
tensorstore.int8 : dtype =
dtype("int8")
8-bit signed two’s-complement integer data type. Corresponds to
numpy.int8
.
-
tensorstore.int16 : dtype =
dtype("int16")
16-bit signed two’s-complement integer data type. Corresponds to
numpy.int16
.
-
tensorstore.int32 : dtype =
dtype("int32")
32-bit signed two’s-complement integer data type. Corresponds to
numpy.int32
.
-
tensorstore.int64 : dtype =
dtype("int64")
32-bit signed two’s-complement integer data type. Corresponds to
numpy.int64
.
-
tensorstore.uint64 : dtype =
dtype("uint64")
64-bit unsigned integer data type. Corresponds to
numpy.uint64
.
-
tensorstore.float8_e4m3fn : dtype =
dtype("float8_e4m3fn")
8-bit floating-point data type.
-
tensorstore.float8_e4m3fnuz : dtype =
dtype("float8_e4m3fnuz")
8-bit floating-point data type.
-
tensorstore.float8_e4m3b11fnuz : dtype =
dtype("float8_e4m3b11fnuz")
8-bit floating-point data type.
-
tensorstore.float8_e5m2 : dtype =
dtype("float8_e5m2")
8-bit floating-point data type.
-
tensorstore.float8_e5m2fnuz : dtype =
dtype("float8_e5m2fnuz")
8-bit floating-point data type.
-
tensorstore.float16 : dtype =
dtype("float16")
IEEE 754 binary16 half-precision floating-point data type. Correspond to
numpy.float16
.
-
tensorstore.bfloat16 : dtype =
dtype("bfloat16")
bfloat16 floating-point data type.
-
tensorstore.float32 : dtype =
dtype("float32")
IEEE 754 binary32 single-precision floating-point data type. Corresponds to
numpy.float32
.
-
tensorstore.float64 : dtype =
dtype("float64")
IEEE 754 binary64 double-precision floating-point data type. Corresponds to
numpy.float64
.
-
tensorstore.complex64 : dtype =
dtype("complex64")
Complex number based on
float32
. Corresponds tonumpy.complex64
.
-
tensorstore.complex128 : dtype =
dtype("complex128")
Complex number based on
float64
. Corresponds tonumpy.complex128
.
-
tensorstore.string : dtype =
dtype("string")
Variable-length byte string data type. Corresponds to the Python
bytes
type.
-
tensorstore.ustring : dtype =
dtype("ustring")
Variable-length Unicode string data type. Corresponds to the Python
str
type.
-
tensorstore.json : dtype =
dtype("json")
JSON data type. Corresponds to an arbitrary Python JSON value.
Asynchronous support¶
- class tensorstore.Future
Handle for consuming the result of an asynchronous operation.
- class tensorstore.Promise
Handle for producing the result of an asynchronous operation.
- class tensorstore.WriteFutures
Handle for consuming the result of an asynchronous write operation.
- class tensorstore.FutureLike
Abstract base class for types representing an asynchronous result.
OCDBT¶
- class tensorstore.ocdbt.DistributedCoordinatorServer
Distributed coordinator server for the OCDBT (Optionally-Cooperative Distributed B+Tree) database.
- tensorstore.ocdbt.dump(base: KvStore, ...) Future[Any]
Dumps the internal representation of an OCDBT database.
Experimental¶
- tensorstore.experimental_collect_matching_metrics(...) list[Any]
Collects metrics with a matching prefix.
- tensorstore.experimental_collect_prometheus_format_metrics(...) list[str]
Collects metrics in prometheus exposition format. See: https://prometheus.io/docs/instrumenting/exposition_formats/
- tensorstore.experimental_push_metrics_to_prometheus(...) Future[int]
Publishes metrics to the prometheus pushgateway. See: https://github.com/prometheus/pushgateway
- tensorstore.experimental_update_verbose_logging(...) None
Updates verbose logging flags associated with –tensorstore_verbose_logging and TENSORSTORE_VERBOSE_LOGGING flags.
- tensorstore.parse_tensorstore_flags(argv: list[str]) None
Parses and initializes internal tensorstore flags from argv.