- tensorstore.Schema.vindex[self, indices: NumpyIndexingSpec] Schema
Transforms the schema using NumPy-style indexing with vectorized indexing semantics.
This is similar to
__getitem__(indices)
, but differs in that ifindices
specifies any array indexing terms, the broadcasted array dimensions are unconditionally added as the first dimensions of the result domain.Example
>>> schema = ts.Schema( ... domain=ts.IndexDomain(labels=['x', 'y', 'z'], ... shape=[1000, 2000, 3000]), ... chunk_layout=ts.ChunkLayout(grid_origin=[100, 200, 300], ... inner_order=[0, 1, 2]), ... ) >>> schema.vindex[[5, 10, 20], [7, 8, 10]] Schema({ 'chunk_layout': {'grid_origin': [None, 300], 'inner_order': [1, 0]}, 'domain': { 'exclusive_max': [3, 3000], 'inclusive_min': [0, 0], 'labels': ['', 'z'], }, 'rank': 2, })
- Returns:¶
New schema with the indexing operation applied.
- Raises:¶
ValueError – If
self.rank
isNone
.