- tensorstore.Spec.vindex[self, indices: NumpyIndexingSpec] Spec
Transforms the spec using NumPy-style indexing with vectorized indexing semantics.
This is similar to
__getitem__(indices)
, but differs in that ifindices
specifies any array indexing terms, the broadcasted array dimensions are unconditionally added as the first dimensions of the result domain.Example
>>> spec = ts.Spec({ ... 'driver': 'zarr', ... 'kvstore': { ... 'driver': 'memory' ... }, ... 'transform': { ... 'input_shape': [[70], [80]], ... } ... }) >>> spec.vindex[[5, 10, 20], [7, 8, 10]] Spec({ 'driver': 'zarr', 'kvstore': {'driver': 'memory'}, 'transform': { 'input_exclusive_max': [3], 'input_inclusive_min': [0], 'output': [{'index_array': [5, 10, 20]}, {'index_array': [7, 8, 10]}], }, })
- Returns:¶
New spec with the indexing operation applied.
- Raises:¶
ValueError – If
self.transform
isNone
.