- tensorstore.TensorStore.vindex[self, indices: NumpyIndexingSpec] TensorStore
Computes a virtual view using NumPy-style indexing with vectorized indexing semantics.
This is similar to
__getitem__(indices)
, but differs in that ifindices
specifies any array indexing terms, the broadcasted array dimensions are unconditionally added as the first dimensions of the result domain:>>> dataset = await ts.open( ... { ... 'driver': 'zarr', ... 'kvstore': { ... 'driver': 'memory' ... } ... }, ... dtype=ts.uint32, ... shape=[60, 70, 80], ... create=True) >>> view = dataset.vindex[:, [5, 10, 20], [7, 8, 10]] >>> view TensorStore({ 'context': { 'cache_pool': {}, 'data_copy_concurrency': {}, 'memory_key_value_store': {}, }, 'driver': 'zarr', 'dtype': 'uint32', 'kvstore': {'driver': 'memory'}, 'metadata': { 'chunks': [60, 70, 80], 'compressor': { 'blocksize': 0, 'clevel': 5, 'cname': 'lz4', 'id': 'blosc', 'shuffle': -1, }, 'dimension_separator': '.', 'dtype': '<u4', 'fill_value': None, 'filters': None, 'order': 'C', 'shape': [60, 70, 80], 'zarr_format': 2, }, 'transform': { 'input_exclusive_max': [3, [60]], 'input_inclusive_min': [0, 0], 'output': [ {'input_dimension': 1}, {'index_array': [[5], [10], [20]]}, {'index_array': [[7], [8], [10]]}, ], }, })