- tensorstore.Spec.base : Spec | None
Spec of the underlying
TensorStore
, if this is an adapter of a single underlyingTensorStore
.Otherwise, equal to
None
.Drivers that support this method include:
Example
>>> spec = ts.Spec({ ... 'driver': 'zarr', ... 'kvstore': 'memory://', ... }) >>> spec.update(shape=[100, 200], dtype=ts.uint32) >>> cast_spec = ts.cast(spec, ts.float32) >>> cast_spec Spec({ 'base': { 'driver': 'zarr', 'dtype': 'uint32', 'kvstore': {'driver': 'memory'}, 'schema': { 'domain': {'exclusive_max': [100, 200], 'inclusive_min': [0, 0]}, }, }, 'driver': 'cast', 'dtype': 'float32', 'transform': { 'input_exclusive_max': [[100], [200]], 'input_inclusive_min': [0, 0], }, }) >>> cast_spec[30:40, 20:25].base Spec({ 'driver': 'zarr', 'dtype': 'uint32', 'kvstore': {'driver': 'memory'}, 'schema': {'domain': {'exclusive_max': [100, 200], 'inclusive_min': [0, 0]}}, 'transform': { 'input_exclusive_max': [40, 25], 'input_inclusive_min': [30, 20], }, }) >>> downsampled_spec = ts.downsample(spec, ... downsample_factors=[2, 4], ... method='mean') >>> downsampled_spec Spec({ 'base': { 'driver': 'zarr', 'kvstore': {'driver': 'memory'}, 'schema': { 'domain': {'exclusive_max': [100, 200], 'inclusive_min': [0, 0]}, }, 'transform': { 'input_exclusive_max': [[100], [200]], 'input_inclusive_min': [0, 0], }, }, 'downsample_factors': [2, 4], 'downsample_method': 'mean', 'driver': 'downsample', 'dtype': 'uint32', 'transform': { 'input_exclusive_max': [[50], [50]], 'input_inclusive_min': [0, 0], }, }) >>> downsampled_spec[30:40, 20:25].base