Chào mừng bạn đến với Comprehensive Rust
This is a free Rust course developed by the Android team at Google. The course covers the full spectrum of Rust, from basic syntax to advanced topics like generics and error handling.
The latest version of the course can be found at https://google.github.io/comprehensive-rust/. If you are reading somewhere else, please check there for updates.
The course is also available as a PDF.
The goal of the course is to teach you Rust. We assume you don’t know anything about Rust and hope to:
- Give you a comprehensive understanding of the Rust syntax and language.
- Enable you to modify existing programs and write new programs in Rust.
- Show you common Rust idioms.
We call the first four course days Rust Fundamentals.
Building on this, you’re invited to dive into one or more specialized topics:
- Android: a half-day course on using Rust for Android platform development (AOSP). This includes interoperability with C, C++, and Java.
- Chromium: a half-day course on using Rust within Chromium based browsers. This includes interoperability with C++ and how to include third-party crates in Chromium.
- Bare-metal: a whole-day class on using Rust for bare-metal (embedded) development. Both microcontrollers and application processors are covered.
- Concurrency: a whole-day class on concurrency in Rust. We cover both classical concurrency (preemptively scheduling using threads and mutexes) and async/await concurrency (cooperative multitasking using futures).
Non-Goals
Rust is a large language and we won’t be able to cover all of it in a few days. Some non-goals of this course are:
- Learning how to develop macros: please see Chapter 19.5 in the Rust Book and Rust by Example instead.
Assumptions
The course assumes that you already know how to program. Rust is a statically-typed language and we will sometimes make comparisons with C and C++ to better explain or contrast the Rust approach.
If you know how to program in a dynamically-typed language such as Python or JavaScript, then you will be able to follow along just fine too.
Speaker Notes
This is an example of a speaker note. We will use these to add additional information to the slides. This could be key points which the instructor should cover as well as answers to typical questions which come up in class.
Hướng Dẫn Khóa Học
Trang này là dành cho người hướng dẫn khóa học.
Đây là một số thông tin cơ bản về cách chúng tôi triển khai khóa học trong nội bộ Google.
Chúng tôi mở lớp từ 9 giờ sáng đến 4 giờ chiều, trong đó có 1 tiếng nghỉ trưa. Một ngày học bao gồm lớp buổi sáng và lớp buổi chiều, mỗi buổi kéo dài 3 tiếng. Một buổi học sẽ được chia thành nhiều quãng nghỉ để học sinh có thời gian thực hành.
Trước khi bắt đầu giảng dạy khóa học này, bạn sẽ cần:
-
Làm quen với cách sử dụng giáo trình của khóa học. Chúng tôi đã lồng ghép các ghi chú thuyết trình để giúp tóm lược lại nội dung từng phần (chúng tôi cũng rất mong bạn có thể giúp đỡ, đóng góp vào các ghi chú này!). Khi giảng dạy, bạn nên chắc chắn rằng các ghi chú thuyết trình sẽ được mở dưới dạng một cửa sổ popup (bằng cách nhấn vào biểu tượng có mũi tên nhỏ bên phải chữ “Speaker Notes”). Làm vậy sẽ giúp bạn có thể thuyết trình với slide rõ ràng nhất.
-
Xác định lịch học. Vì nội dung khóa học kéo dài bốn ngày, chúng tôi khuyến nghị bạn sắp xếp lịch học dàn trải ra hai tuần. Các học viên đều bảo rằng việc có những “khoảng trống” trong khóa rất có ích để họ có thể tiêu hóa hết lượng thông tin được cung cấp.
-
Tìm một căn phòng đủ lớn để chứa tất cả học viên. Chúng tôi khuyến nghị một lớp nên từ 15 đến 25 người, đủ nhỏ để mọi người có thể thoải mái đưa ra các câu hỏi — và nó cũng đủ để người hướng dẫn có thể trả lời hết các câu hỏi đó. Hãy đảm bảo rằng phòng học có đủ ghế cho cả bạn và học sinh: bạn đương nhiên cần ngồi dạy với laptop của bạn. Đặc biệt, bạn sẽ hướng dẫn và thực hành mẫu rất nhiều bài live-coding, nên một cái ghế sẽ có ích hơn là một cái bục giảng đó.
-
Trong ngày học, hãy đến lớp sớm một chút để chuẩn bị sẵn sàng mọi thứ. Chúng tôi khuyến khích chạy trực tiếp lệnh
mdbook serve
trên laptop của bạn (tham khảo hướng dẫn cài đặt ở đây). Việc này giúp đảm bảo việc chuyển trang của bạn được diễn ra mượt mà nhất, ngoài ra còn cho phép bạn sửa lỗi chính tả trực tiếp khi bạn hoặc ai đó phát hiện ra. -
Để mọi người làm các bài luyện tập theo hình thức cá nhân hoặc nhóm nhỏ. Chúng tôi thường bỏ ra 30 đến 45 phút để thực hành vào buối sáng hoặc chiều (tính cả thời gian chữa đáp án). Hãy chắc chắn hỏi các học viên xem có ai đang bị tắc hoặc cần mình giúp không. Nếu bạn thấy vài người đang gặp một vấn đề giống nhau, hay đưa nó lên trước lớp và đề xuất giải pháp, như là, gợi ý mọi người cách để tìm kiếm thông tin liên quan trong thư viện tiêu chuẩn.
Đó là tất cả, chúc bạn may mắn với hành trình hướng dẫn của bạn! Chúng tôi hy vọng bạn có thể tìm thấy niềm vui như cách chúng tôi tìm thấy khi dạy khóa học này!
Sau khi khóa học kết thúc, rất mong nhận được feedback từ bạn để chúng tôi có thể hoàn thiện khóa học hơn nữa. Chúng tôi rất vui lòng khi được biết những gì mang lại hiệu quả cho bạn và những gì cần cải thiện thêm. Ngoài ra, học viên của bạn cũng có thể tích cực gửi feedback cho chúng tôi tại đây!
Cấu Trúc Khóa Học
Trang này là dành cho người hướng dẫn khóa học.
Rust Căn Bản
Ở bốn ngày học đầu tiên, ta sẽ nhanh chóng khái quát rất nhiều khía cạnh căn bản của Rust!
Thời khóa biểu:
- Ngày 1 Buổi Sáng (2 tiếng và 5 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 5 minutes |
Hello, World | 15 minutes |
Kiểu Dữ Liệu Và Giá Trị | 40 minutes |
Control flow (Điểu khiển luồng) căn bản | 40 minutes |
- Ngày 1 Buổi Chiều (2 tiếng và 35 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Tuples and Arrays | 35 minutes |
References | 55 minutes |
User-Defined Types | 50 minutes |
- Ngày 2 Buổi Sáng (2 tiếng và 55 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Pattern Matching | 1 hour |
Methods and Traits | 50 minutes |
- Ngày 2 Buổi Chiều (3 tiếng và 10 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Generics | 40 minutes |
Standard Library Types | 1 hour and 20 minutes |
Standard Library Traits | 1 hour and 40 minutes |
- Ngày 3 Buổi Sáng (2 tiếng và 20 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Memory Management | 1 hour |
Smart Pointers | 55 minutes |
- Ngày 3 Buổi Chiều (1 tiếng và 50 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Borrowing | 55 minutes |
Lifetimes | 50 minutes |
- Ngày 4 Buổi Sáng (2 tiếng và 40 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Iterators | 45 minutes |
Modules | 40 minutes |
Testing | 45 minutes |
- Ngày 4 Buổi Chiều (2 tiếng và 10 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Error Handling | 55 minutes |
Unsafe Rust | 1 hour and 5 minutes |
Chuyên Sâu
Ngoài lớp học “4 ngày” về Rust căn bản ra, chúng tôi còn cung cấp thêm một số chủ đề chuyên sâu sau:
Rust trong Android
Chủ đề chuyên sâu Rust trong Android là khóa học nửa ngày hướng dẫn sử dụng Rust cho phát triển trên nền tảng Android, bao gồm tính tương tác với C, C++ và Java.
Bạn sẽ cần cài sẵn AOSP checkout, rồi tạo một checkout cho repository của khóa học và di chuyển thư mục src/android/
tới thư mục root của AOSP checkout trên. Việc này sẽ đảm bảo hệ thống build của Android tìm được file Android.bp
trong thư mục src/android/
.
Hãy chắc chắn rằng lệnh adb sync
hoạt động được với trình giả lập hoặc thiết bị thực của bạn, và pre-build tất cả ví dụ Android bằng src/android/build_all.sh
. Bạn có thể đọc script để xem các lệnh mà nó chạy và xác nhận rằng mọi thứ đều hoạt động khi bạn kích hoạt bằng tay.
Rust trong Chromium
Chủ đề chuyên sâu Rust trong Chromium là khóa học nửa ngày hướng dẫn sử dụng Rust như là một phần của trình duyệt nhân Chromium, bao gồm hệ thống build gn
, đưa vào thư viện bên thứ ba (“crates”) và tính tương tác với C++.
Bạn sẽ cần có khả năng build được Chromium — chúng tôi đề xuất build bằng công cụ xây dựng thành phần, debug bởi tốc độ ấn tượng của nó. Dù sao thì bất kỳ cách build nào cũng đều hoạt động được, chỉ cần bạn đảm bảo rằng mình sẽ chạy được trình duyệt Chromium vừa build xong.
Bare-Metal Rust
Chủ đề chuyên sâu Bare-Metal Rust là khóa học một ngày hướng dẫn sử dụng Rust cho phát triển nhúng (bare-metal). Nội dung về vi điều khiển và bộ xử lý ứng dụng sẽ được bao quát trong phần này.
Về phần vi điều khiển, bạn sẽ cần mua trước bo mạch BBC micro:bit v2. Mỗi người sẽ cần cài đặt một số packages dựa theo miêu tả ở trang chào mừng.
Tính đồng thời trong Rust
Chủ đề chuyên sâu Tính đồng thời trong Rust là khóa học một ngày hướng dẫn về khái niệm đồng thời async
/await
điển hình.
Bạn sẽ cần thiết lập một crate mới và tải xuống các gói phụ thuộc cần thiết để sẵn sàng chạy. Rồi bạn có thể copy/paste các ví dụ vào src/main.rs
để thử nghiệm:
cargo init concurrency
cd concurrency
cargo add tokio --features full
cargo run
Thời khóa biểu:
- Ngày 3 Buổi Sáng (2 tiếng và 20 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Threads | 30 minutes |
Channels | 20 minutes |
Send and Sync | 15 minutes |
Shared State | 30 minutes |
Exercises | 1 hour and 10 minutes |
- Buổi Chiều (3 tiếng và 20 phút, bao gồm thời gian nghỉ)
Segment | Thời lượng |
---|---|
Async Basics | 30 minutes |
Channels and Control Flow | 20 minutes |
Pitfalls | 55 minutes |
Exercises | 1 hour and 10 minutes |
Quy Chuẩn
Khóa học này hướng tới tính tương tác cao nên chúng tôi khuyến khích để các câu hỏi dẫn bạn đi khám phá nhiều thứ thú vị của Rust!
Phím Tắt
Dưới đây là một vài phím tắt có ích cho việc sử dụng mdBook:
- Arrow-Left: Navigate to the previous page.
- Arrow-Right: Navigate to the next page.
- Ctrl + Enter: Execute the code sample that has focus.
- s: Activate the search bar.
Bản Dịch
Khóa học này đã được dịch ra các ngôn ngữ sau nhờ các tình nguyện viên tuyệt vời:
- Tiếng Bồ Đào Nha - Brasil bởi @rastringer, @hugojacob, @joaovicmendes, và @henrif75.
- Tiếng Trung Giản Thể bởi @suetfei, @wnghl, @anlunx, @kongy, @noahdragon, @superwhd, @SketchK, và @nodmp.
- Tiếng Trung Phồn Thể bởi @hueich, @victorhsieh, @mingyc, @kuanhungchen, và @johnathan79717.
- Tiếng Hàn bởi @keispace, @jiyongp, @jooyunghan, và @namhyung.
- Tiếng Tây Ban Nha và @deavid.
Sử dụng nút lựa chọn ngôn ngữ ở góc phía trên bên phải để đổi sang ngôn ngữ khác.
Bản Dịch Chưa Hoàn Chỉnh
Hiện tại, vẫn còn một lượng lớn các bản dịch đang được tiến hành. Chúng tôi liên kết đến các bản dịch được cập nhật gần đây nhất:
- Tiếng Bengal bởi @raselmandol.
- Tiếng Pháp bởi @KookaS, @vcaen và @AdrienBaudemont.
- Tiếng Đức bởi @Throvn và @ronaldfw.
- Tiếng Nhật bởi @CoinEZ-JPN và @momotaro1105.
- Tiếng Ý bởi @henrythebuilder và @detro.
Nếu bạn muốn đóng góp giúp đỡ, vui lòng xem hướng dẫn của chúng tôi để biết nên bắt đầu như thế nào. Các bản dịch được hợp tác cùng hoàn thành trên một bản issue tracker.
Sử Dụng Cargo
Khi bạn bắt đầu đọc về Rust, bạn sẽ rất nhanh chóng được thấy Cargo, một công cụ tiêu chuẩn xây dựng và chạy ứng dụng Rust, nằm trong hệ sinh thái của Rust. Trong phần này, chúng tôi sẽ tóm tắt ngắn gọn Cargo là gì, nó phù hợp với hệ sinh thái rộng lớn hơn ra sao, và nó phù hợp với khóa đào tạo như thế nào.
Cài đặt
Vui lòng tuân theo hướng dẫn cài đặt tại https://rustup.rs/.
Bạn sẽ nhận được công cụ xây dựng Cargo (cargo
) và trình biên dịch Rust (rustc
). Bạn cũng sẽ có rustup
, một tiện ích dòng lệnh mà bạn có thể sử dụng để cài đặt các phiên bản khác nhau cho trình biên dịch.
Sau khi cài đặt Rust thành công, bạn nên cấu hình trình Text Editor hoặc IDE của bạn để hoạt động với Rust. Hầu hết các Text Editor như VS Code, Emacs, Vim/Neovim, v.v… đều áp dụng rust-analyzer để thực hiện tính năng auto-completion và jump-to-definition. Bên cạnh đó, vẫn còn một IDE khác khá phổ biến được phát triển bởi JetBrains là RustRover.
Speaker Notes
-
Trong hệ máy Debian/Ubuntu, bạn còn có thể tự cài đặt Cargo, mã nguồn của Rust, và Rust Formatter bằng
apt
. Tuy nhiên, bạn sẽ chỉ cài được phiên bản đã bị quá hạn và có thể dẫn tới những lỗi không mong muốn. Câu lệnh để cài sẽ là như sau:sudo apt install cargo rust-src rustfmt
Hệ Sinh Thái Rust
Hệ sinh thái của Rust bao gồm một số lượng đáng kể các công cụ, trong đó nổi bật nhất như là:
-
rustc
: trình biên dịch Rust, thứ mà sẽ “dịch” các file.rs
sang dạng nhị phân hoặc các formats bậc trung khác. -
cargo
: trình quản lý các gói phụ thuộc và công cụ xây dựng cho Rust. Cargo sẽ tải các gói phụ thuộc, thường được lưu trữ trên https://crates.io, rồi đưa chúng chorustc
khi bạn xây dựng dự án. Cargo còn có các trình chạy kiểm thử được cài sẵn phục vụ cho việc thực thi các đơn vị kiểm thử. -
rustup
: bộ công cụ cài đặt và cập nhật cho Rust. Công cụ này được sử dụng để cài đặt và cập nhậtrustc
vàcargo
khi các phiên bản mới của Rust được phát hành. Thêm vào đó,rustup
còn có thể tải các tài liệu cho thư viện tiêu chuẩn. Bạn có thể cài đặt nhiều phiên bản Rust cùng lúc vàrustup
sẽ cho bạn chuyển đổi các phiên bản với nhau khi cần.
Speaker Notes
Các điểm chính:
-
Rust có một lịch phát hành phiên bản mới dày đặc với một phiên bản mới mỗi sáu tuần. Các phiên bản mới bảo toàn tính tương thích với các phiên bản cũ — cùng với đó chúng kích hoạt thêm các chức năng mới.
-
Có tổng cộng ba kênh phát hành: “stable”, “beta”, và “nightly”.
-
Các tính năng mới dang được thử nghiệm trên “nightly”, còn “beta” sẽ trở thành “stable” sau mỗi sáu tuần.
-
Các gói phụ thuộc cũng có thể được phân giải từ các hệ thống đăng ký thay thế, git, các thư mục, v.v…
-
Rust còn có nhiều phiên bản lớn: Rust 2021 là bản hiện tại, Rust 2018, và Rust 2015.
-
Các phiên bản lớn được cho phép thực hiện các thay đổi không tương thích đối với ngôn ngữ.
-
Để phòng trừ phá vỡ cấu trúc mã, các phiên bản lớn sẽ được chọn cho crate của bạn thông qua file
Cargo.toml
. -
Nhằm tránh hệ sinh thái bị chia nhỏ ra, trình biên dịch Rust có thể trộn lẫn các đoạn mã được viết dưới các phiên bản lớn khác nhau.
-
Hãy đề cập với người học rằng việc sử dụng trình biên dịch trực tiếp mà không thông qua
cargo
là việc rất hiếm (hầu hết người dùng không bao giờ làm như vậy). -
Nói không ngoa bản thân Cargo là một công cụ cự kỳ mạnh mẽ và toàn diện. Nó có khả năng bao gồm nhưng không giới hạn tới nhiều tính năng mở rộng sau:
- Cấu trúc dự án/bộ phần mềm.
- Workspaces.
- Các Dev Dependencies và trình quản lý/bộ nhớ đệm cho Runtime Dependency.
- Build scripting.
- Cài đặt trên toàn môi trường.
- Nó còn có khả năng mở rộng được với các lệnh con dưới dạng plugins (như là cargo clippy).
-
Tham khảo thêm tại The Cargo Book.
-
Code Mẫu Trong Khóa Đào Tạo
Với khóa đào tạo này, chúng ta sẽ hầu như khám phá ngôn ngữ Rust qua các ví dụ có thể thực thi được ngay trên trình duyệt của mình. Việc này giúp cho việc chuẩn bị được thực hiện dễ dàng hơn và đảm bảo trải nghiệm đồng nhất với mọi người.
Cài đặt Cargo vẫn được khuyến khích: nó sẽ giúp bạn làm các bài thực hành dễ hơn. Trong ngày học cuối cùng, chúng tôi sẽ làm một bài tập lớn để cho bạn thấy cách làm việc với các gói phụ thuộc và bạn sẽ cần Cargo để làm nó.
Các khối code trong khóa học này hoàn toàn tương tác được:
You can use Ctrl + Enter to execute the code when focus is in the text box.
Speaker Notes
Hầu hết các đoạn code mẫu đều có thể chỉnh sửa được như trên. Nhưng có một ít các đoạn mẫu lại không chỉnh sửa được vì vài lý do sau:
-
Các Playgrounds được nhúng không thể thực thi được các đơn vị kiểm thử. Hãy copy-paste đoạn code và mở nó trong một Playground thực sự để minh họa các thử nghiệm.
-
Các Playgrounds được nhúng bị mất trạng thái tạm thời ở thời điểm bạn chuyển sang trang khác! Vì lý do này, các học sinh nên giải các bài thực hành sử dụng Rust đã được cài đặt trong máy tính riêng hoặc qua Playground thực sự.
Chạy Cargo Trong Máy Tính Của Bạn
Nếu bạn muốn thử nghiệm code trong hệ thống riêng của bạn, vậy thì trước hết bạn cần phải cài đặt Rust. Hãy tuân theo các hướng dẫn trong Rust Book. Bạn sẽ học được cách sử dụng rustc
và cargo
ở đây. Tại thời điểm bài này được viết, phiên bản ổn định mới nhất của Rust có các số phiên bản sau:
% rustc --version
rustc 1.69.0 (84c898d65 2023-04-16)
% cargo --version
cargo 1.69.0 (6e9a83356 2023-04-12)
Bạn cũng có thể sử dụng bất kỳ phiên bản nào ra sau đó vì Rust luôn bảo trì khả năng tương thích ngược của nó.
Sau khi cài xong, tuân theo các bước sau đây để xây dựng tệp nhị phân Rust từ một trong các ví dụ trong khóa đào tạo:
-
Nhấn vào nút “Copy to clipboard” trong ví dụ mà bạn muốn copy.
-
Sử dụng
cargo new exercise
để tạo một thư mụcexercise/
mới cho code của bạn:$ cargo new exercise Created binary (application) `exercise` package
-
Điều hướng tới
exercise/
và sử dụngcargo run
để build và chạy tệp nhị phân của bạn:$ cd exercise $ cargo run Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise) Finished dev [unoptimized + debuginfo] target(s) in 0.75s Running `target/debug/exercise` Hello, world!
-
Thay thế khung code trong
src/main.rs
với code riêng của bạn. Chẳng hạn, sử dụng ví dụ ở trang trước, viếtsrc/main.rs
sao cho thành như saufn main() { println!("Chỉnh sửa tôi đê!"); }
-
Sử dụng
cargo run
để build và chạy tệp nhị phân vừa được cập nhật:$ cargo run Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise) Finished dev [unoptimized + debuginfo] target(s) in 0.24s Running `target/debug/exercise` Edit me!
-
Sử dụng
cargo check
để kiểm tra nhanh dự án của bạn, sử dụngcargo build
để biên dịch nó mà không chạy nó luôn. Bạn có thể tìm các tệp được tạo ra ởtarget/debug/
cho debug build thông thường. Sử dụngcargo build --release
để xuất ra bản build tối ưu cho việc xuất bản ởtarget/release/
. -
Bạn có thể thêm các gói phụ thuộc vào dự án của bạn bằng cách chỉnh sửa file
Cargo.toml
. Khi bạn chạy các lệnhcargo
, nó sẽ tự động tải về và biên dịch các gói phụ thuộc bị thiếu cho bạn.
Speaker Notes
Hãy cố gắng khuyến khích các học viên cài đặt Cargo và sử dụng trong Text Editor ở máy riêng. Điều này sẽ giúp cuộc sống của họ dễ thở hơn một tý vì họ sẽ được làm việc trong một môi trường phát triển bình thường.
Chào mừng tới Ngày 1
Đây là ngày học đầu tiên của Rust Căn Bản. Sẽ có rất nhiều nội dung mà chúng ta bao quát trong hôm nay:
- Câu lệnh Rust cơ bản: các biến, kiểu dữ liệu đơn giản và phức hợp, enum, struct, tham chiếu, hàm và phương thức.
- Các kiểu dữ liệu và suy luận kiểu.
- Các cấu trúc điều kiển luồng: vòng lặp, điều kiện, vân vân…
- Các kiểu dữ liệu tự định nghĩa: struct và enum.
- So khớp mẫu: hủy enum, struct, và mảng.
Mục lục
Buổi học nên kéo dài khoảng 2 tiếng và 5 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 5 minutes |
Hello, World | 15 minutes |
Kiểu Dữ Liệu Và Giá Trị | 40 minutes |
Control flow (Điểu khiển luồng) căn bản | 40 minutes |
Speaker Notes
This slide should take about 5 minutes.
Hãy lưu ý các học viên rằng:
- Học viên nên đặt câu hỏi bất kì khi nào thay vì đợi đến cuối buổi học.
- Lớp học rất khuyến khích có nhiều sự tương tác và thảo luận!
- Với vai trò là người hướng dẫn, bạn nên giữ các cuộc thảo luận sao cho không bị lạc đề, chẳng hạn, thử giới hạn các cuộc thảo luận xung quanh cách Rust hoạt động so với vài ngôn ngữ khác. Việc cân bằng này có thể sẽ khá khó khăn, nhưng ta thà chấp nhận nó để học viên thấy hứng thú hơn là việc giao tiếp một chiều.
- Một phần có thể bị hỏi trước khi ta học tới slide của phần đó.
- Đây là điều hoàn toàn chấp nhận được! Nhắc lại kiến thức là một phần quan trọng của việc học. Hãy nhớ rằng các slides chỉ là công cụ hỗ trợ cho bạn và bạn có thể bỏ qua chúng nếu muốn.
Ý tưởng cho ngày đầu tiên đó là đưa ra các khía cạnh “cơ bản” của Rust tương tự với các ngôn ngữ khác. Các phần nâng cao hơn sẽ được đề cập tới ở những ngày kế tiếp.
Nếu bạn đang giảng bài này trên lớp, thì bạn nên vắn tắt một lượt mục lục trên. Hãy ghi nhớ rằng cuối mỗi mục nhỏ sẽ có một bài thực hành, sau đó là giờ nghỉ giải lao. Hãy lên kế hoạch để chữa bài thực hành sau giờ nghỉ. Thời gian ở sau mỗi đề mục là nhằm giúp bạn giữ đúng tiến độ khóa học, nhưng bạn cũng có thể thoải mái điều chỉnh linh hoạt nếu cần thiết!
Hello, World
Phần này sẽ kéo dài khoảng 15 phút, bao gồm:
Slide | Thời lượng |
---|---|
Rust là gì? | 10 minutes |
Benefits of Rust | 3 minutes |
Sân chơi (Playground) | 2 minutes |
Rust là gì?
Rust là một ngôn ngữ lập trình mới được phát hành phiên bản 1.0 vào năm 2015:
- Rust là một ngôn ngữ được biên dịch tĩnh với vai trò tương tự như C++
rustc
sử dụng LLVM làm bộ dịch backend.
- Rust hỗ trợ rất nhiều nền tảng và kiểu kiến trúc:
- x86, ARM, WebAssembly, …
- Linux, Mac, Windows, …
- Rust được sử dụng cho nhiều loại thiết bị:
- firmware và các chương trình khởi động (boot loaders),
- màn hình thông minh,
- điện thoại di động,
- máy tính,
- máy chủ.
Speaker Notes
This slide should take about 10 minutes.
Rust phù hợp trong cùng lĩnh vực như C++:
- Độ linh hoạt cao.
- Có quyền điều khiển cao.
- Có thể ứng dụng với các thiết bị có tài nguyên hạn chế như vi điều khiển.
- Không có thời gian chạy (runtime) hay trình thu dọn rác (garbage collection).
- Tập trung vào tính đáng tin cậy và độ an toàn mà không làm giảm hiệu suất.
Benefits of Rust
Some unique selling points of Rust:
-
Compile time memory safety - whole classes of memory bugs are prevented at compile time
- No uninitialized variables.
- No double-frees.
- No use-after-free.
- No
NULL
pointers. - No forgotten locked mutexes.
- No data races between threads.
- No iterator invalidation.
-
No undefined runtime behavior - what a Rust statement does is never left unspecified
- Array access is bounds checked.
- Integer overflow is defined (panic or wrap-around).
-
Modern language features - as expressive and ergonomic as higher-level languages
- Enums and pattern matching.
- Generics.
- No overhead FFI.
- Zero-cost abstractions.
- Great compiler errors.
- Built-in dependency manager.
- Built-in support for testing.
- Excellent Language Server Protocol support.
Speaker Notes
This slide should take about 3 minutes.
Do not spend much time here. All of these points will be covered in more depth later.
Make sure to ask the class which languages they have experience with. Depending on the answer you can highlight different features of Rust:
-
Experience with C or C++: Rust eliminates a whole class of runtime errors via the borrow checker. You get performance like in C and C++, but you don’t have the memory unsafety issues. In addition, you get a modern language with constructs like pattern matching and built-in dependency management.
-
Experience with Java, Go, Python, JavaScript…: You get the same memory safety as in those languages, plus a similar high-level language feeling. In addition you get fast and predictable performance like C and C++ (no garbage collector) as well as access to low-level hardware (should you need it)
Sân chơi (Playground)
Sân chơi cho Rust (Rust Playground) cho phép chúng ta chạy thử những đoạn code ngắn viết bằng Rust, đặc biệt là các ví dụ và bài tập trong khoá học này. Hãy mở Rust Playground và chạy thử chương trình “hello-world”. Rust Playground đi kèm với một vài tính năng hữu ích:
-
Ở phần “Công cụ (Tools)”, sử dụng tuỳ chọn
rustfmt
để định dạng đoạn code của bạn theo cách “tiêu chuẩn”. -
Rust có hai “chế độ” chính để tạo code: Gỡ lỗi (Debug) (thêm nhiều thông tin hỗ trợ trong quá trình chạy (runtime), ít tối ưu hơn) và Phát hành (Release) (ít thông tin hỗ trợ trong quá trình chạy (runtime), tối ưu hoá nhiều hơn). Các tuỳ chọn này có trong mục “Gỡ lỗi (Debug)” ở phía trên.
-
Nếu bạn quan tâm, bạn có thể sử dụng chế độ “ASM” ở trong phần “…” để xem đoạn code Assembly được tạo.
Speaker Notes
This slide should take about 2 minutes.
Hãy khuyến khích học viên sử dụng Rust Playground để thử nghiệm trong giờ giải lao. Khuyến khích học viên luôn giữ tab mở và liên tục thử nghiệm mọi thứ trong suốt phần còn lại của khoá học. Điều này đặc biệt hữu ích cho những học viên nâng cao muốn biết thêm về tối ưu hoá của Rust và những đoạn code Assembly được tạo ra.
Kiểu Dữ Liệu Và Giá Trị
Phân đoạn này sẽ kéo dài khoảng 40 phút, bao gồm:
Slide | Thời lượng |
---|---|
Hello, World | 5 minutes |
Biến | 5 minutes |
Giá trị | 5 minutes |
Số Học | 3 minutes |
Suy Luận Kiểu | 3 minutes |
Thực Hành: Fibonacci | 15 minutes |
Hello, World
Chúng ta hãy cùng bước vào chương trình Rust đơn giản nhất, một chương trình Hello World điển hình:
Những gì bạn thấy được:
- Khái niệm hàm được giới thiệu với
fn
. - Các khối code được phân tách theo ngoặc nhọn y như C và C++.
- Hàm
main
là điểm bắt đầu của cả chương trình. - Rust có các hygienic macros, ví dụ như
println!
. - Các chuỗi của Rust được mã hóa theo chuẩn UTF-8 và có thể chứa bất kỳ ký tự Unicode nào.
Speaker Notes
This slide should take about 5 minutes.
Slide này là nhằm cố gắng giúp các học viên thấy thoải mái với Rust code. Họ sẽ được thấy hàng tấn đoạn code tương tự trong bốn ngày tiếp theo nên ta có thể bắt đầu với những thứ nhỏ bé quen thuộc trước.
Các điểm chính:
-
Rust khá giống với các ngôn ngữ truyền thống như C/C++/Java, đó là điều bắt buộc. Nó cũng cố tránh sáng tạo lại những thứ đã có trừ khi thực sự cần thiết.
-
Rust là ngôn ngữ hiện đại với khả năng hỗ trợ đầy đủ các tính năng như là Unicode.
-
Rust sử dụng các macro trong các tình huống như khi bạn muốn có số lượng đối số thay đổi (không bao gồm nạp chồng hàm).
-
Macros được gọi là ‘hygienic’ khi chúng không vô tình bắt các định danh từ phạm vi mà chúng được sử dụng. Rust macros thực chất chỉ là hygienic từng phần.
-
Rust là ngôn ngữ đa mô hình. Ví dụ, nó có các tính năng hướng đối tượng mạnh mẽ, và dù cho nó không phải là một ngôn ngữ lập trình chức năng, nó vẫn bao gồm nhiều khái niệm lập trình hàm.
Biến
Rust cung cấp tính năng an toàn kiểu thông qua kiểu dữ liệu tĩnh. Việc liên kết biến được thực thi bằng let
:
Speaker Notes
This slide should take about 5 minutes.
-
Hãy thử loại bỏ ghi chú
x = 20
để cho thấy các biến theo mặc định là bất biến. Thêm từ khóamut
để cho các biến được chấp nhận thay đổi. -
Ở đây, từ khóa
i32
chỉ kiểu dữ liệu của biến. Từ khóa này là bắt buộc cho việc biên dịch, nhưng trong nhiều trường hợp, suy luận kiểu (sẽ được thảo luận sau) cho phép lập trình viên bỏ qua nó.
Giá trị
Dưới đây là các kiểu dữ liệu được định nghĩa sẵn, và nguyên văn cú pháp cho các giá trị của từng loại.
Kiểu Dữ Liệu | Nguyên Văn Cú Pháp | |
---|---|---|
Số nguyên có dấu | i8 , i16 , i32 , i64 , i128 , isize | -10 , 0 , 1_000 , 123_i64 |
Số nguyên không dấu | u8 , u16 , u32 , u64 , u128 , usize | 0 , 123 , 10_u16 |
Số thực dấu phẩy động | f32 , f64 | 3.14 , -10.0e20 , 2_f32 |
Giá trị vô hướng Unicode | char | 'a' , 'α' , '∞' |
Boolean | bool | true , false |
Các kiểu dữ liệu có độ lớn như sau:
iN
,uN
, vàfN
tương đương N bit,isize
vàusize
tương đương một pointer,char
tương đương 32 bit,bool
tương đương 8 bit.
Speaker Notes
This slide should take about 5 minutes.
Ngoài ra, còn có một vài cú pháp không được kể đến ở trên:
- Tất cả dấu gạch dưới trong số đều có thể bỏ qua, chúng chỉ nhằm cho mục đích dễ đọc mã. Vậy nên,
1_000
có thể được viết thành1000
(hoặc10_00
), và123_i64
có thể được viết thành123i64
.
Số Học
Speaker Notes
This slide should take about 3 minutes.
Đây là lần đầu tiên ta thấy một hàm mới ngoài hàm main
, nhưng hàm này cũng có logic rõ ràng dễ hiểu: nó nhận ba số nguyên, và trả lại một số nguyên. Chi tiết về hàm sẽ được bao quát sau.
Số học trong Rust cũng rất giống với các ngôn ngữ khác, với tiền đề giống nhau.
Vậy còn hiên tượng tràn số nguyên thì sao? Trong C và C++, vấn đề tràn số nguyên có dấu thực ra lại không được xác định, và nó có thể xảy ra theo các cách khác nhau trên các nền tảng hoặc trình biên dịch khác nhau. Còn trong Rust, nó được xác định rõ ràng.
Để xem cách tràn số nguyên xảy ra, hãy thử đổi i32
sang i16
. Việc này sẽ gây ra lỗi (đã được kiểm tra) trong bản debug build và được điều chỉnh lại kiểu phù hợp trong bản release build. Ngoài ra, còn có các tùy chọn số học khác như tính số tràn (overflowing), tính số bão hòa (saturating), và tính giữ phần dư (carrying). Chúng được truy cập bằng cú pháp riêng, ví dụ, (a * b).saturating_add(b * c).saturating_add(c * a)
.
Trên thực tế, trình biên dịch sẽ phát hiện ra tràn số nguyên trong các biểu thức hằng số, vì thế nên ta cần phải tách ra các hàm riêng ở trong ví dụ trên.
Suy Luận Kiểu
Rust sẽ kiểm tra xem biến được sử dụng như thế nào để xác định kiểu dữ liệu:
Speaker Notes
This slide should take about 3 minutes.
Slide này cho ta thấy cách mà trình biên dịch Rust đoán kiểu dữ liệu dựa trên các ràng buộc từ việc khai báo và sử dụng biến.
Một điều quan trọng cần lưu ý đó là việc khai báo các biến như trên không phải là một dạng khai báo động theo kiểu “any” mà có thể gán được bất kỳ dữ liệu nào. Mã máy được sinh ra từ cách khai báo này cũng giống như cách khai báo một kiểu dữ liệu cụ thể. Trình biên dịch sẽ lo liệu những việc này cho ta và giúp ta viết những đoạn mã ngắn gọn hơn.
Khi không có bất cứ ràng buộc nào cho khai báo kiểu số nguyên, Rust sẽ mặc định sử dụng i32
. Đôi khi trong thông báo lỗi biến sẽ được hiển thị dưới dạng {integer}
. Tương tự, với các số thực dấu phẩy động, Rust mặc định là f64
.
fn main() {
let x = 3.14;
let y = 20;
assert_eq!(x, y);
// ERROR: no implementation for `{float} == {integer}`
}
Thực Hành: Fibonacci
Hai số Fibonacci đầu tiên mang giá trị 1
. Với n > 2, số Fibonacci thứ n sẽ được tính đệ quy bằng với tổng của số Fibonacci thứ n - 1 và n - 2.
Hãy viết một hàm fib(n)
để tính số Fibonacci thứ n. Khi nào thì hàm này sẽ gây lỗi?
Đáp Án
Control flow (Điểu khiển luồng) căn bản
Phân đoạn này sẽ kéo dài khoảng 40 phút, bao gồm:
Slide | Thời lượng |
---|---|
Lệnh if | 4 minutes |
Vòng lặp | 5 minutes |
break và continue | 4 minutes |
Blocks và scopes | 5 minutes |
Hàm | 3 minutes |
Macros | 2 minutes |
Thực hành: Chuỗi Collatz | 15 minutes |
Lệnh if
Học viên sử dụng lệnh if
giống hệt như lệnh if
ở những ngôn ngữ lập trình khác
Ngoài ra, học viên có thể sử dụng if
như một biểu thức. Biểu thức cuối cùng của mỗi khối lệnh sẽ trở thành giá trị của biểu thức if
đó
Speaker Notes
This slide should take about 4 minutes.
Bởi vì if
là một biểu thức và phải có một kiểu dữ liệu nhất định, mỗi nhánh khối lệnh phải có cùng một kiểu dữ liểu. Hãy trình bày nếu học viên thêm dấu ;
vào sau "nhỏ"
ở ví dụ thứ hai
Khi if
được sử dụng cho một biểu thức, biểu thức đó phải có dấu ;
để tách biệt nó khỏi lệnh tiếp theo. Loại bỏ dấu ;
sau println!
để thấy được lỗi biên dịch
Vòng lặp
Có ba từ khóa cho vòng lặp trong Rust: while,
loopvà
for`
while
Từ khóa while
hoạt đông tương tự như những ngôn ngữ lập trình khác, thực hiện vòng lặp lại một khối lệnh trong khi điều kiện còn đúng
for
[Từ khóa for
] lặp lại qua chuỗi dữ liệu hoặc các phần tử trong một tập hợp:
Speaker Notes
- Cơ chế hoạt động của vòng lặp
for
sử dụng một khái niệm gọi là “iterators” để xử việc lặp lại qua nhiều dạng dãy/tập hợp khác nhau. Iterators sẽ được nhắc tới chi tiết sau. - Lưu ý rằng vòng lặp
for
chỉ lặp tới4
. Trình bày cú pháp1..=5
để có một dãy bao gồm
loop
Từ khóa loop
là một vòng lặp bất tận, cho tới khi break
.
break
và continue
Nếu học viên muốn bắt đầu vòng lặp tiếp theo thì hãy sử dụng continue
.
Nếu học viên muốn kết thúc một vòng lặp sớm, sử dụng break
. Đối với loop
, từ khóa này có thể dùng một biểu thức tùy chọn trở thành giá trị của biểu thức loop
Labels (nhãn)
Cả continue
và break
có thể sử dụng một nhãn tùy chọn để được sử dụng để thoát ra khỏi những vòng lặp lồng nhau
Speaker Notes
- Lưu ý rằng
loop
là kiểu vòng lặp duy nhất có thể trả về một giá trị. Đấy là vởi vì vòng lặp sẽ chắc chắn được nhập vào ít nhất một lần (không giống như vòng lặpwhile
vàfor
)
Blocks và scopes
Blocks (khối lệnh)
Mỗi block trong Rust chứa một chuỗi những biểu thức, được bao bọc bởi dấu {}
. Mỗi block có một giá trị và một kiểu dữ liệu tương ứng với biểu thức cuối cùng của block đó:
Nếu biểu thức cuối cùng kết thúc bằng dấu ;
, giá trị trả về và kiểu dữ liệu sẽ là ()
.
Speaker Notes
This slide and its sub-slides should take about 5 minutes.
- Giáo viên có thể trình bày rằng giá trị của block thay đổi bằng cách thay đổi dòng cuối cùng của block đó. Ví dụ, thêm vào hoặc loại bỏ dấu
;
hoặc sử dụng lệnhreturn
Scopes và shadowing
Mỗi scope của một biến đều được giới hạn trong một block (khối lệnh).
Học viên có thể shadow (che khuất) các biến, bao gồm các biến ở ngoài phạm vi và các biến ở trong cùng một scope:
Speaker Notes
- Trình bày rằng mỗi phạm vi của một biến bị giới hạn bằng cách thêm một biến
b
vào block bên trong ở ví dụ trên, sau đó thử truy cập biến đó từ bên ngoài block. - Shadow khác với mutation (đột biến), bởi vì sau khi shadow tất cả các vị trí bộ nhớ của biến đó cùng đồng thời tồn tại. Tất cả đều tồn tại dưới cùng một tên, biến nào được sử dụng trong chương trình tùy thuộc vào việc học viên sử dụng chúng ở đâu trong mã.
- Mỗi một shadowing variable (biến bóng) đều có thể có một kiểu dữ liệu khác nhau
- Shadowing có thể khó hiểu ban đầu, nhưng hữu dụng trong việc giữ giá trị sau khi
.unwrap()
.
Hàm
Speaker Notes
This slide should take about 3 minutes.
- Những tham số phải được chú thích sau bằng một kiểu dữ liệu (ngược lại với một số ngôn ngữ lập trình khác), rồi một giá trị trả về.
- Biểu thức cuối cùng trong hàm (hay một khối) sẽ trở thành giá trị tả về. Đơn giản bằng cách bỏ qua dấu
;
ở cuối biểu thức. Từ khóareturn
có thể sử dụng để trả về sớm, nhưng “giá trị trần (bare value)” là triết lí ngôn ngữ (idiomatic) khi đặt ở cuối hàm (tái cấu trúcgcd
dể sử dụngreturn
). - Một số hàm sẽ không có giá trị trở về, sẽ trả về ‘kiểu dữ liệu’,
()
. Trình biên dịch sẽ kết luận rằng kiểu dữ liệu sẽ là-> ()
nếu kiểu dữ liệu trả về được bỏ qua. - Overloading (nạp chồng) không được hỗ trợ – mỗi hàm chỉ có duy nhất một triển khai.
- Luôn luôn lấy một số những tham số nhất định. Đối số mặc định không đưọc hỗ trợ. Macros có thể sử dụng cho hỗ trợ hàm đa tham số.
- Luôn luôn chỉ lấy một nhóm kiểu tham số dữ liệu. Những kiểu dữ liệu này có thể là generic (tổng quát), và sẽ được đề cập tới ở phần sau.
Macros
Macros được triển khai qua mã Rust trong quá trình biên dịch, và có thể nhận nhiều những biến khác nhau. Macros được nhận diện bởi dấu !
ở sau cùng. Rust standard library (Thư viện Rust căn bản) bao gồm nhiều loại macros hữu dụng khác nhau.
println!(format, ..)
in nội dung ra standard output, áp dụng format được miêu tả trongstd::fmt
.format!(format, ..)
hoạt động tương tự nhưprintln!
nhưng trả về dữ liệu ở dạngstring
.dbg!(expression)
logs giá trị của biểu thức rồi trả về giá trị đó.todo!()
đánh dấu một phần của mã là not-yet-implemented (chưa được hoàn thiện). Khi được triển khai, đoạn mã đõ sẽ panic.unreachable!()
đánh dẫu một đoạn mã là unreachable (không thể tới). Khi được triển khai, đoạn mã đõ sẽ panic.
Speaker Notes
This slide should take about 2 minutes.
Bài học được rút ra trong chương này là những cú pháp thông dụng tiện nghi trên tồn tại, và các sử dụng chúng. Tại sao chúng được định nghĩa là macros, với cách những macros triền khai qua đều không quan trọng.
Khóa học này sẽ không đi qua về định nghĩ macros, nhưng những chương tiếp theo sẽ đề cập tới sử dụng derive macros.
Thực hành: Chuỗi Collatz
The Collatz Sequence is defined as follows, for an arbitrary n1 greater than zero:
- If ni is 1, then the sequence terminates at ni.
- If ni is even, then ni+1 = ni / 2.
- If ni is odd, then ni+1 = 3 * ni + 1.
For example, beginning with n1 = 3:
- 3 is odd, so n2 = 3 * 3 + 1 = 10;
- 10 is even, so n3 = 10 / 2 = 5;
- 5 is odd, so n4 = 3 * 5 + 1 = 16;
- 16 is even, so n5 = 16 / 2 = 8;
- 8 is even, so n6 = 8 / 2 = 4;
- 4 is even, so n7 = 4 / 2 = 2;
- 2 is even, so n8 = 1; and
- chuỗi chấm dứt.
Viết một hàm để tính độ dài chủa chuỗi Collatz với một giá trị ban đầu n
Đáp Án
Welcome Back
Buổi học nên kéo dài khoảng 2 tiếng và 35 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Tuples and Arrays | 35 minutes |
References | 55 minutes |
User-Defined Types | 50 minutes |
Tuples and Arrays
Phần này sẽ kéo dài khoảng 35 phút, bao gồm:
Slide | Thời lượng |
---|---|
Arrays | 5 minutes |
Tuples | 5 minutes |
Array Iteration | 3 minutes |
Patterns and Destructuring | 5 minutes |
Exercise: Nested Arrays | 15 minutes |
Arrays
Speaker Notes
This slide should take about 5 minutes.
-
A value of the array type
[T; N]
holdsN
(a compile-time constant) elements of the same typeT
. Note that the length of the array is part of its type, which means that[u8; 3]
and[u8; 4]
are considered two different types. Slices, which have a size determined at runtime, are covered later. -
Try accessing an out-of-bounds array element. Array accesses are checked at runtime. Rust can usually optimize these checks away, and they can be avoided using unsafe Rust.
-
We can use literals to assign values to arrays.
-
The
println!
macro asks for the debug implementation with the?
format parameter:{}
gives the default output,{:?}
gives the debug output. Types such as integers and strings implement the default output, but arrays only implement the debug output. This means that we must use debug output here. -
Adding
#
, eg{a:#?}
, invokes a “pretty printing” format, which can be easier to read.
Tuples
Speaker Notes
This slide should take about 5 minutes.
-
Like arrays, tuples have a fixed length.
-
Tuples group together values of different types into a compound type.
-
Fields of a tuple can be accessed by the period and the index of the value, e.g.
t.0
,t.1
. -
The empty tuple
()
is referred to as the “unit type” and signifies absence of a return value, akin tovoid
in other languages.
Array Iteration
The for
statement supports iterating over arrays (but not tuples).
Speaker Notes
This slide should take about 3 minutes.
This functionality uses the IntoIterator
trait, but we haven’t covered that yet.
The assert_ne!
macro is new here. There are also assert_eq!
and assert!
macros. These are always checked while, debug-only variants like debug_assert!
compile to nothing in release builds.
Patterns and Destructuring
When working with tuples and other structured values it’s common to want to extract the inner values into local variables. This can be done manually by directly accessing the inner values:
However, Rust also supports using pattern matching to destructure a larger value into its constituent parts:
Speaker Notes
This slide should take about 5 minutes.
- The patterns used here are “irrefutable”, meaning that the compiler can statically verify that the value on the right of
=
has the same structure as the pattern. - A variable name is an irrefutable pattern that always matches any value, hence why we can also use
let
to declare a single variable. - Rust also supports using patterns in conditionals, allowing for equality comparison and destructuring to happen at the same time. This form of pattern matching will be discussed in more detail later.
- Edit the examples above to show the compiler error when the pattern doesn’t match the value being matched on.
Exercise: Nested Arrays
Arrays can contain other arrays:
What is the type of this variable?
Use an array such as the above to write a function transpose
which will transpose a matrix (turn rows into columns):
Copy the code below to https://play.rust-lang.org/ and implement the function. This function only operates on 3x3 matrices.
// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]
fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
unimplemented!()
}
#[test]
fn test_transpose() {
let matrix = [
[101, 102, 103], //
[201, 202, 203],
[301, 302, 303],
];
let transposed = transpose(matrix);
assert_eq!(
transposed,
[
[101, 201, 301], //
[102, 202, 302],
[103, 203, 303],
]
);
}
fn main() {
let matrix = [
[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],
];
println!("matrix: {:#?}", matrix);
let transposed = transpose(matrix);
println!("transposed: {:#?}", transposed);
}
Đáp Án
References
Phần này sẽ kéo dài khoảng 55 phút, bao gồm:
Slide | Thời lượng |
---|---|
Shared References | 10 minutes |
Exclusive References | 10 minutes |
Slices: &[T] | 10 minutes |
Strings | 10 minutes |
Exercise: Geometry | 15 minutes |
Shared References
A reference provides a way to access another value without taking responsibility for the value, and is also called “borrowing”. Shared references are read-only, and the referenced data cannot change.
A shared reference to a type T
has type &T
. A reference value is made with the &
operator. The *
operator “dereferences” a reference, yielding its value.
Rust will statically forbid dangling references:
Speaker Notes
This slide should take about 10 minutes.
-
A reference is said to “borrow” the value it refers to, and this is a good model for students not familiar with pointers: code can use the reference to access the value, but is still “owned” by the original variable. The course will get into more detail on ownership in day 3.
-
References are implemented as pointers, and a key advantage is that they can be much smaller than the thing they point to. Students familiar with C or C++ will recognize references as pointers. Later parts of the course will cover how Rust prevents the memory-safety bugs that come from using raw pointers.
-
Rust does not automatically create references for you - the
&
is always required. -
Rust will auto-dereference in some cases, in particular when invoking methods (try
r.is_ascii()
). There is no need for an->
operator like in C++. -
In this example,
r
is mutable so that it can be reassigned (r = &b
). Note that this re-bindsr
, so that it refers to something else. This is different from C++, where assignment to a reference changes the referenced value. -
A shared reference does not allow modifying the value it refers to, even if that value was mutable. Try
*r = 'X'
. -
Rust is tracking the lifetimes of all references to ensure they live long enough. Dangling references cannot occur in safe Rust.
x_axis
would return a reference topoint
, butpoint
will be deallocated when the function returns, so this will not compile. -
We will talk more about borrowing when we get to ownership.
Exclusive References
Exclusive references, also known as mutable references, allow changing the value they refer to. They have type &mut T
.
Speaker Notes
This slide should take about 10 minutes.
Các điểm chính:
-
“Exclusive” means that only this reference can be used to access the value. No other references (shared or exclusive) can exist at the same time, and the referenced value cannot be accessed while the exclusive reference exists. Try making an
&point.0
or changingpoint.0
whilex_coord
is alive. -
Be sure to note the difference between
let mut x_coord: &i32
andlet x_coord: &mut i32
. The first one represents a shared reference which can be bound to different values, while the second represents an exclusive reference to a mutable value.
Slices
A slice gives you a view into a larger collection:
- Slices borrow data from the sliced type.
- Question: What happens if you modify
a[3]
right before printings
?
Speaker Notes
This slide should take about 10 minutes.
-
We create a slice by borrowing
a
and specifying the starting and ending indexes in brackets. -
If the slice starts at index 0, Rust’s range syntax allows us to drop the starting index, meaning that
&a[0..a.len()]
and&a[..a.len()]
are identical. -
The same is true for the last index, so
&a[2..a.len()]
and&a[2..]
are identical. -
To easily create a slice of the full array, we can therefore use
&a[..]
. -
s
is a reference to a slice ofi32
s. Notice that the type ofs
(&[i32]
) no longer mentions the array length. This allows us to perform computation on slices of different sizes. -
Slices always borrow from another object. In this example,
a
has to remain ‘alive’ (in scope) for at least as long as our slice. -
The question about modifying
a[3]
can spark an interesting discussion, but the answer is that for memory safety reasons you cannot do it througha
at this point in the execution, but you can read the data from botha
ands
safely. It works before you created the slice, and again after theprintln
, when the slice is no longer used.
Strings
We can now understand the two string types in Rust:
&str
is a slice of UTF-8 encoded bytes, similar to&[u8]
.String
is an owned buffer of UTF-8 encoded bytes, similar toVec<T>
.
Speaker Notes
This slide should take about 10 minutes.
-
&str
introduces a string slice, which is an immutable reference to UTF-8 encoded string data stored in a block of memory. String literals ("Hello"
), are stored in the program’s binary. -
Rust’s
String
type is a wrapper around a vector of bytes. As with aVec<T>
, it is owned. -
As with many other types
String::from()
creates a string from a string literal;String::new()
creates a new empty string, to which string data can be added using thepush()
andpush_str()
methods. -
The
format!()
macro is a convenient way to generate an owned string from dynamic values. It accepts the same format specification asprintln!()
. -
You can borrow
&str
slices fromString
via&
and optionally range selection. If you select a byte range that is not aligned to character boundaries, the expression will panic. Thechars
iterator iterates over characters and is preferred over trying to get character boundaries right. -
For C++ programmers: think of
&str
asstd::string_view
from C++, but the one that always points to a valid string in memory. RustString
is a rough equivalent ofstd::string
from C++ (main difference: it can only contain UTF-8 encoded bytes and will never use a small-string optimization). -
Byte strings literals allow you to create a
&[u8]
value directly: -
Raw strings allow you to create a
&str
value with escapes disabled:r"\n" == "\\n"
. You can embed double-quotes by using an equal amount of#
on either side of the quotes:
Exercise: Geometry
We will create a few utility functions for 3-dimensional geometry, representing a point as [f64;3]
. It is up to you to determine the function signatures.
// Calculate the magnitude of a vector by summing the squares of its coordinates
// and taking the square root. Use the `sqrt()` method to calculate the square
// root, like `v.sqrt()`.
fn magnitude(...) -> f64 {
todo!()
}
// Normalize a vector by calculating its magnitude and dividing all of its
// coordinates by that magnitude.
fn normalize(...) {
todo!()
}
// Use the following `main` to test your work.
fn main() {
println!("Magnitude of a unit vector: {}", magnitude(&[0.0, 1.0, 0.0]));
let mut v = [1.0, 2.0, 9.0];
println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);
println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));
}
Đáp Án
User-Defined Types
Phần này sẽ kéo dài khoảng 50 phút, bao gồm:
Slide | Thời lượng |
---|---|
Named Structs | 10 minutes |
Tuple Structs | 10 minutes |
Enums | 5 minutes |
Static | 5 minutes |
Type Aliases | 2 minutes |
Exercise: Elevator Events | 15 minutes |
Named Structs
Like C and C++, Rust has support for custom structs:
Speaker Notes
This slide should take about 10 minutes.
Key Points:
- Structs work like in C or C++.
- Like in C++, and unlike in C, no typedef is needed to define a type.
- Unlike in C++, there is no inheritance between structs.
- This may be a good time to let people know there are different types of structs.
- Zero-sized structs (e.g.
struct Foo;
) might be used when implementing a trait on some type but don’t have any data that you want to store in the value itself. - The next slide will introduce Tuple structs, used when the field names are not important.
- Zero-sized structs (e.g.
- If you already have variables with the right names, then you can create the struct using a shorthand.
- The syntax
..avery
allows us to copy the majority of the fields from the old struct without having to explicitly type it all out. It must always be the last element.
Tuple Structs
If the field names are unimportant, you can use a tuple struct:
This is often used for single-field wrappers (called newtypes):
Speaker Notes
This slide should take about 10 minutes.
- Newtypes are a great way to encode additional information about the value in a primitive type, for example:
- The number is measured in some units:
Newtons
in the example above. - The value passed some validation when it was created, so you no longer have to validate it again at every use:
PhoneNumber(String)
orOddNumber(u32)
.
- The number is measured in some units:
- Demonstrate how to add a
f64
value to aNewtons
type by accessing the single field in the newtype.- Rust generally doesn’t like inexplicit things, like automatic unwrapping or for instance using booleans as integers.
- Operator overloading is discussed on Day 3 (generics).
- The example is a subtle reference to the Mars Climate Orbiter failure.
Enums
The enum
keyword allows the creation of a type which has a few different variants:
Speaker Notes
This slide should take about 5 minutes.
Key Points:
- Enumerations allow you to collect a set of values under one type.
Direction
is a type with variants. There are two values ofDirection
:Direction::Left
andDirection::Right
.PlayerMove
is a type with three variants. In addition to the payloads, Rust will store a discriminant so that it knows at runtime which variant is in aPlayerMove
value.- This might be a good time to compare structs and enums:
- In both, you can have a simple version without fields (unit struct) or one with different types of fields (variant payloads).
- You could even implement the different variants of an enum with separate structs but then they wouldn’t be the same type as they would if they were all defined in an enum.
- Rust uses minimal space to store the discriminant.
-
If necessary, it stores an integer of the smallest required size
-
If the allowed variant values do not cover all bit patterns, it will use invalid bit patterns to encode the discriminant (the “niche optimization”). For example,
Option<&u8>
stores either a pointer to an integer orNULL
for theNone
variant. -
You can control the discriminant if needed (e.g., for compatibility with C):
Without
repr
, the discriminant type takes 2 bytes, because 10001 fits 2 bytes.
-
More to Explore
Rust has several optimizations it can employ to make enums take up less space.
-
Null pointer optimization: For some types, Rust guarantees that
size_of::<T>()
equalssize_of::<Option<T>>()
.Example code if you want to show how the bitwise representation may look like in practice. It’s important to note that the compiler provides no guarantees regarding this representation, therefore this is totally unsafe.
static
Static variables will live during the whole execution of the program, and therefore will not move:
As noted in the Rust RFC Book, these are not inlined upon use and have an actual associated memory location. This is useful for unsafe and embedded code, and the variable lives through the entirety of the program execution. When a globally-scoped value does not have a reason to need object identity, const
is generally preferred.
Speaker Notes
This slide should take about 5 minutes.
static
is similar to mutable global variables in C++.static
provides object identity: an address in memory and state as required by types with interior mutability such asMutex<T>
.
More to Explore
Because static
variables are accessible from any thread, they must be Sync
. Interior mutability is possible through a Mutex
, atomic or similar.
Thread-local data can be created with the macro std::thread_local
.
const
Constants are evaluated at compile time and their values are inlined wherever they are used:
According to the Rust RFC Book these are inlined upon use.
Only functions marked const
can be called at compile time to generate const
values. const
functions can however be called at runtime.
Speaker Notes
- Mention that
const
behaves semantically similar to C++’sconstexpr
- It isn’t super common that one would need a runtime evaluated constant, but it is helpful and safer than using a static.
Type Aliases
A type alias creates a name for another type. The two types can be used interchangeably.
Speaker Notes
This slide should take about 2 minutes.
C programmers will recognize this as similar to a typedef
.
Exercise: Elevator Events
We will create a data structure to represent an event in an elevator control system. It is up to you to define the types and functions to construct various events. Use #[derive(Debug)]
to allow the types to be formatted with {:?}
.
This exercise only requires creating and populating data structures so that main
runs without errors. The next part of the course will cover getting data out of these structures.
Đáp Án
Welcome to Day 2
Now that we have seen a fair amount of Rust, today will focus on Rust’s type system:
- Pattern matching: extracting data from structures.
- Methods: associating functions with types.
- Traits: behaviors shared by multiple types.
- Generics: parameterizing types on other types.
- Standard library types and traits: a tour of Rust’s rich standard library.
Mục lục
Buổi học nên kéo dài khoảng 2 tiếng và 10 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Pattern Matching | 1 hour |
Methods and Traits | 50 minutes |
Pattern Matching
Phần này sẽ kéo dài khoảng 1 giờ, bao gồm:
Slide | Thời lượng |
---|---|
Matching Values | 10 minutes |
Destructuring Structs | 4 minutes |
Destructuring Enums | 4 minutes |
Let Control Flow | 10 minutes |
Exercise: Expression Evaluation | 30 minutes |
Matching Values
The match
keyword lets you match a value against one or more patterns. The comparisons are done from top to bottom and the first match wins.
The patterns can be simple values, similarly to switch
in C and C++:
The _
pattern is a wildcard pattern which matches any value. The expressions must be exhaustive, meaning that it covers every possibility, so _
is often used as the final catch-all case.
Match can be used as an expression. Just like if
, each match arm must have the same type. The type is the last expression of the block, if any. In the example above, the type is ()
.
A variable in the pattern (key
in this example) will create a binding that can be used within the match arm.
A match guard causes the arm to match only if the condition is true.
Speaker Notes
This slide should take about 10 minutes.
Key Points:
-
You might point out how some specific characters are being used when in a pattern
|
as anor
..
can expand as much as it needs to be1..=5
represents an inclusive range_
is a wild card
-
Match guards as a separate syntax feature are important and necessary when we wish to concisely express more complex ideas than patterns alone would allow.
-
They are not the same as separate
if
expression inside of the match arm. Anif
expression inside of the branch block (after=>
) happens after the match arm is selected. Failing theif
condition inside of that block won’t result in other arms of the originalmatch
expression being considered. -
The condition defined in the guard applies to every expression in a pattern with an
|
.
Structs
Like tuples, Struct can also be destructured by matching:
Speaker Notes
This slide should take about 4 minutes.
- Change the literal values in
foo
to match with the other patterns. - Add a new field to
Foo
and make changes to the pattern as needed. - The distinction between a capture and a constant expression can be hard to spot. Try changing the
2
in the second arm to a variable, and see that it subtly doesn’t work. Change it to aconst
and see it working again.
Enums
Like tuples, enums can also be destructured by matching:
Patterns can also be used to bind variables to parts of your values. This is how you inspect the structure of your types. Let us start with a simple enum
type:
Here we have used the arms to destructure the Result
value. In the first arm, half
is bound to the value inside the Ok
variant. In the second arm, msg
is bound to the error message.
Speaker Notes
This slide should take about 4 minutes.
- The
if
/else
expression is returning an enum that is later unpacked with amatch
. - You can try adding a third variant to the enum definition and displaying the errors when running the code. Point out the places where your code is now inexhaustive and how the compiler tries to give you hints.
- The values in the enum variants can only be accessed after being pattern matched.
- Demonstrate what happens when the search is inexhaustive. Note the advantage the Rust compiler provides by confirming when all cases are handled.
- Save the result of
divide_in_two
in theresult
variable andmatch
it in a loop. That won’t compile becausemsg
is consumed when matched. To fix it, match&result
instead ofresult
. That will makemsg
a reference so it won’t be consumed. This “match ergonomics” appeared in Rust 2018. If you want to support older Rust, replacemsg
withref msg
in the pattern.
Let Control Flow
Rust has a few control flow constructs which differ from other languages. They are used for pattern matching:
if let
expressionswhile let
expressionsmatch
expressions
if let
expressions
The if let
expression lets you execute different code depending on whether a value matches a pattern:
let else
expressions
For the common case of matching a pattern and returning from the function, use let else
. The “else” case must diverge (return
, break
, or panic - anything but falling off the end of the block).
Like with if let
, there is a while let
variant which repeatedly tests a value against a pattern:
Here String::pop
returns Some(c)
until the string is empty, after which it will return None
. The while let
lets us keep iterating through all items.
Speaker Notes
This slide should take about 10 minutes.
if-let
- Unlike
match
,if let
does not have to cover all branches. This can make it more concise thanmatch
. - A common usage is handling
Some
values when working withOption
. - Unlike
match
,if let
does not support guard clauses for pattern matching.
let-else
if-let
s can pile up, as shown. The let-else
construct supports flattening this nested code. Rewrite the awkward version for students, so they can see the transformation.
The rewritten version is:
while-let
- Point out that the
while let
loop will keep going as long as the value matches the pattern. - You could rewrite the
while let
loop as an infinite loop with an if statement that breaks when there is no value to unwrap forname.pop()
. Thewhile let
provides syntactic sugar for the above scenario.
Exercise: Expression Evaluation
Let’s write a simple recursive evaluator for arithmetic expressions.
The Box
type here is a smart pointer, and will be covered in detail later in the course. An expression can be “boxed” with Box::new
as seen in the tests. To evaluate a boxed expression, use the deref operator (*
) to “unbox” it: eval(*boxed_expr)
.
Some expressions cannot be evaluated and will return an error. The standard Result<Value, String>
type is an enum that represents either a successful value (Ok(Value)
) or an error (Err(String)
). We will cover this type in detail later.
Copy and paste the code into the Rust playground, and begin implementing eval
. The final product should pass the tests. It may be helpful to use todo!()
and get the tests to pass one-by-one. You can also skip a test temporarily with #[ignore]
:
#[test]
#[ignore]
fn test_value() { .. }
If you finish early, try writing a test that results in division by zero or integer overflow. How could you handle this with Result
instead of a panic?
Đáp Án
Methods and Traits
Phần này sẽ kéo dài khoảng 50 phút, bao gồm:
Slide | Thời lượng |
---|---|
Methods | 10 minutes |
Traits | 15 minutes |
Deriving | 3 minutes |
Exercise: Generic Logger | 20 minutes |
Methods
Rust allows you to associate functions with your new types. You do this with an impl
block:
The self
arguments specify the “receiver” - the object the method acts on. There are several common receivers for a method:
&self
: borrows the object from the caller using a shared and immutable reference. The object can be used again afterwards.&mut self
: borrows the object from the caller using a unique and mutable reference. The object can be used again afterwards.self
: takes ownership of the object and moves it away from the caller. The method becomes the owner of the object. The object will be dropped (deallocated) when the method returns, unless its ownership is explicitly transmitted. Complete ownership does not automatically mean mutability.mut self
: same as above, but the method can mutate the object.- No receiver: this becomes a static method on the struct. Typically used to create constructors which are called
new
by convention.
Speaker Notes
This slide should take about 8 minutes.
Key Points:
- It can be helpful to introduce methods by comparing them to functions.
- Methods are called on an instance of a type (such as a struct or enum), the first parameter represents the instance as
self
. - Developers may choose to use methods to take advantage of method receiver syntax and to help keep them more organized. By using methods we can keep all the implementation code in one predictable place.
- Methods are called on an instance of a type (such as a struct or enum), the first parameter represents the instance as
- Point out the use of the keyword
self
, a method receiver.- Show that it is an abbreviated term for
self: Self
and perhaps show how the struct name could also be used. - Explain that
Self
is a type alias for the type theimpl
block is in and can be used elsewhere in the block. - Note how
self
is used like other structs and dot notation can be used to refer to individual fields. - This might be a good time to demonstrate how the
&self
differs fromself
by trying to runfinish
twice. - Beyond variants on
self
, there are also special wrapper types allowed to be receiver types, such asBox<Self>
.
- Show that it is an abbreviated term for
Traits
Rust lets you abstract over types with traits. They’re similar to interfaces:
Speaker Notes
This slide and its sub-slides should take about 15 minutes.
-
A trait defines a number of methods that types must have in order to implement the trait.
-
In the “Generics” segment, next, we will see how to build functionality that is generic over all types implementing a trait.
Implementing Traits
Speaker Notes
-
To implement
Trait
forType
, you use animpl Trait for Type { .. }
block. -
Unlike Go interfaces, just having matching methods is not enough: a
Cat
type with atalk()
method would not automatically satisfyPet
unless it is in animpl Pet
block. -
Traits may provide default implementations of some methods. Default implementations can rely on all the methods of the trait. In this case,
greet
is provided, and relies ontalk
.
Supertraits
A trait can require that types implementing it also implement other traits, called supertraits. Here, any type implementing Pet
must implement Animal
.
Speaker Notes
This is sometimes called “trait inheritance” but students should not expect this to behave like OO inheritance. It just specifies an additional requirement on implementations of a trait.
Speaker Notes
Associated Types
Associated types are placeholder types which are supplied by the trait implementation.
Speaker Notes
-
Associated types are sometimes also called “output types”. The key observation is that the implementer, not the caller, chooses this type.
-
Many standard library traits have associated types, including arithmetic operators and
Iterator
.
Deriving
Supported traits can be automatically implemented for your custom types, as follows:
Speaker Notes
This slide should take about 3 minutes.
Derivation is implemented with macros, and many crates provide useful derive macros to add useful functionality. For example, serde
can derive serialization support for a struct using #[derive(Serialize)]
.
Exercise: Logger Trait
Let’s design a simple logging utility, using a trait Logger
with a log
method. Code which might log its progress can then take an &impl Logger
. In testing, this might put messages in the test logfile, while in a production build it would send messages to a log server.
However, the StderrLogger
given below logs all messages, regardless of verbosity. Your task is to write a VerbosityFilter
type that will ignore messages above a maximum verbosity.
This is a common pattern: a struct wrapping a trait implementation and implementing that same trait, adding behavior in the process. What other kinds of wrappers might be useful in a logging utility?
use std::fmt::Display;
pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: impl Display);
}
struct StderrLogger;
impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: impl Display) {
eprintln!("verbosity={verbosity}: {message}");
}
}
fn do_things(logger: &impl Logger) {
logger.log(5, "FYI");
logger.log(2, "Uhoh");
}
// TODO: Define and implement `VerbosityFilter`.
fn main() {
let l = VerbosityFilter { max_verbosity: 3, inner: StderrLogger };
do_things(&l);
}
Đáp Án
Welcome Back
Buổi học nên kéo dài khoảng 4 tiếng, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Generics | 40 minutes |
Standard Library Types | 1 hour and 20 minutes |
Standard Library Traits | 1 hour and 40 minutes |
Generics
Phân đoạn này sẽ kéo dài khoảng 40 phút, bao gồm:
Slide | Thời lượng |
---|---|
Generic Functions | 5 minutes |
Generic Data Types | 10 minutes |
Trait Bounds | 10 minutes |
impl Trait | 5 minutes |
Exercise: Generic min | 10 minutes |
Generic Functions
Rust supports generics, which lets you abstract algorithms or data structures (such as sorting or a binary tree) over the types used or stored.
Speaker Notes
This slide should take about 5 minutes.
-
Rust infers a type for T based on the types of the arguments and return value.
-
This is similar to C++ templates, but Rust partially compiles the generic function immediately, so that function must be valid for all types matching the constraints. For example, try modifying
pick
to returneven + odd
ifn == 0
. Even if only thepick
instantiation with integers is used, Rust still considers it invalid. C++ would let you do this. -
Generic code is turned into non-generic code based on the call sites. This is a zero-cost abstraction: you get exactly the same result as if you had hand-coded the data structures without the abstraction.
Generic Data Types
You can use generics to abstract over the concrete field type:
Speaker Notes
This slide should take about 10 minutes.
-
Q: Why
T
is specified twice inimpl<T> Point<T> {}
? Isn’t that redundant?- This is because it is a generic implementation section for generic type. They are independently generic.
- It means these methods are defined for any
T
. - It is possible to write
impl Point<u32> { .. }
.Point
is still generic and you can usePoint<f64>
, but methods in this block will only be available forPoint<u32>
.
-
Try declaring a new variable
let p = Point { x: 5, y: 10.0 };
. Update the code to allow points that have elements of different types, by using two type variables, e.g.,T
andU
.
Generic Traits
Traits can also be generic, just like types and functions. A trait’s parameters get concrete types when it is used.
Speaker Notes
-
The
From
trait will be covered later in the course, but its definition in thestd
docs is simple. -
Implementations of the trait do not need to cover all possible type parameters. Here,
Foo::From("hello")
would not compile because there is noFrom<&str>
implementation forFoo
. -
Generic traits take types as “input”, while associated types are a kind of “output” type. A trait can have multiple implementations for different input types.
-
In fact, Rust requires that at most one implementation of a trait match for any type T. Unlike some other languages, Rust has no heuristic for choosing the “most specific” match. There is work on adding this support, called specialization.
Trait Bounds
When working with generics, you often want to require the types to implement some trait, so that you can call this trait’s methods.
You can do this with T: Trait
or impl Trait
:
Speaker Notes
This slide should take about 8 minutes.
-
Try making a
NonClonable
and passing it toduplicate
. -
When multiple traits are necessary, use
+
to join them. -
Show a
where
clause, students will encounter it when reading code.fn duplicate<T>(a: T) -> (T, T) where T: Clone, { (a.clone(), a.clone()) }
- It declutters the function signature if you have many parameters.
- It has additional features making it more powerful.
- If someone asks, the extra feature is that the type on the left of “:” can be arbitrary, like
Option<T>
.
- If someone asks, the extra feature is that the type on the left of “:” can be arbitrary, like
-
Note that Rust does not (yet) support specialization. For example, given the original
duplicate
, it is invalid to add a specializedduplicate(a: u32)
.
impl Trait
Similar to trait bounds, an impl Trait
syntax can be used in function arguments and return values:
Speaker Notes
This slide should take about 5 minutes.
impl Trait
allows you to work with types which you cannot name. The meaning of impl Trait
is a bit different in the different positions.
-
For a parameter,
impl Trait
is like an anonymous generic parameter with a trait bound. -
For a return type, it means that the return type is some concrete type that implements the trait, without naming the type. This can be useful when you don’t want to expose the concrete type in a public API.
Inference is hard in return position. A function returning
impl Foo
picks the concrete type it returns, without writing it out in the source. A function returning a generic type likecollect<B>() -> B
can return any type satisfyingB
, and the caller may need to choose one, such as withlet x: Vec<_> = foo.collect()
or with the turbofish,foo.collect::<Vec<_>>()
.
What is the type of debuggable
? Try let debuggable: () = ..
to see what the error message shows.
Exercise: Generic min
In this short exercise, you will implement a generic min
function that determines the minimum of two values, using the Ord
trait.
use std::cmp::Ordering;
// TODO: implement the `min` function used in `main`.
fn main() {
assert_eq!(min(0, 10), 0);
assert_eq!(min(500, 123), 123);
assert_eq!(min('a', 'z'), 'a');
assert_eq!(min('7', '1'), '1');
assert_eq!(min("hello", "goodbye"), "goodbye");
assert_eq!(min("bat", "armadillo"), "armadillo");
}
Speaker Notes
This slide and its sub-slides should take about 10 minutes.
Đáp Án
Standard Library Types
Phần này sẽ kéo dài khoảng 1 giờ và 20 phút, bao gồm:
Slide | Thời lượng |
---|---|
Standard Library | 3 minutes |
Documentation | 5 minutes |
Option | 10 minutes |
Result | 10 minutes |
String | 10 minutes |
Vec | 10 minutes |
HashMap | 10 minutes |
Exercise: Counter | 20 minutes |
Speaker Notes
Hãy dành thời gian xem lại tài liệu cho từng trang trong phần này, đặc biệt là những hàm phổ biến.
Standard Library
Đi kèm với Rust là một thư viện chuẩn tổng hợp các kiểu dữ liệu thông dụng.Nhờ đó, hai thư viện có thể hoạt động cùng nhau một cách mượt mà vì cả hai đều sử dụng cùng một kiểu String
của thư viện chuẩn.
Trong thực tế, thư viện chuẩn của Rust chứa nhiều tầng riêng biệt: core
, alloc
và std
.
core
bao gồm các kiểu dữ liệu và hàm cơ bản nhất không phụ thuộc vàolibc
, bộ cấp phát bộ nhớ hoặc thậm chí là hệ điều hành.alloc
bao gồm các kiểu dữ liệu yêu cầu phải được cấp phát trên bộ nhớ heap, nhưVec
,Box
vàArc
.- Phần mềm nhúng viết bằng Rust thường chỉ sử dụng
core
, và đôi khialloc
.
Documentation
Rust đi kèm với một bộ tài liệu rất chi tiết. Ví dụ:
- Tất cả chi tiết về vòng lặp.
- Các kiểu dữ liệu cơ bản như
u8
. - Các kiểu dữ liệu thuộc về thư viện chuẩn như
Option
hoặcBinaryHeap
.
Ngoài ra, bạn cũng có thể tự viết tài liệu cho code của bản thân:
Nội dung tài liệu sẽ được xử lý bằng Markdown. Tất cả các thư viện Rust đã được publish đều sẽ tự động được công cụ rustdoc viết tài liệu, và được lưu trữ tại docs.rs
. Tất cả thành phần công khai trong một API nên được viết tài liệu theo phương pháp này.
Để viết tài liệu cho một thành phần từ bên trong thành phần đó (như bên trong một module), hãy sử dụng //!
hoặc /*! .. */
. Cú pháp trên thường được gọi là “inner doc comments”:
Speaker Notes
This slide should take about 5 minutes.
- Cho học sinh xem tài liệu được viết cho thư viện
rand
tại https://docs.rs/rand.
Option
Chúng ta đã thấy một số cách dùng Option<T>
. Kiểu dữ liệu này hoặc lưu trữ một giá trị kiểu T
hoặc không lưu trữ gì cả. Ví dụ, hàm String::find
trả về một Option<usize>
.
Speaker Notes
This slide should take about 10 minutes.
Option
được sử dụng rộng rãi ở nhiều nơi, không chỉ trong thư viện chuẩn.unwrap
sẽ trả về giá trị củaOption
hoặc panic.expect
hoạt động tương tự nhưng có thể truyền thêm một thông báo lỗi.- Chương trình có thể panic khi gặp phải giá trị
None
, nhưng bạn không thể “vô tình” quên kiểm traNone
. - Thông thường, ta có thể thoải mái sử dụng
unwrap
/expect
khi thử nghiệm một ý tưởng mới, nhưng code production thường xử lýNone
một cách an toàn hơn.
- Chương trình có thể panic khi gặp phải giá trị
Option<T>
được tối ưu để chiếm bằng bộ nhớ nhưT
trong đa số trường hợp.
Result
Result
hoạt động tương tự như Option
, nhưng được sử dụng để biểu diễn kết quả thành công hoặc thất bại của một tác vụ. Tương tự như Res
trong phần thực hành về biểu thức, Result
cũng có hai biến thể khác nhau cho mỗi trường hợp thành công và thất bại, nhưng được tổng quát hóa: Result<T, E>
trong đó T
được sử dụng trong trường hợp Ok
và E
xuất hiện trong trường hợp Err
.
Speaker Notes
This slide should take about 10 minutes.
- Tương tự với
Option
, giá trị trả về trong trường hợp thành công được đặt bên trongResult
, buộc người dùng phải trích xuất giá trị một cách rõ ràng, đảm bảo mọi lỗi đều được kiểm tra. Trong trường hợp mà lỗi chắc chắn không thể xảy ra,unwrap()
hoặcexpect()
có thể được gọi, bày tỏ rõ ràng ý định của người viết là lỗi không thể xảy ra. - Khuyến khích học viên đọc tài liệu về
Result
. Không nhất thiết phải đọc trong khóa học, nhưng đáng đề cập đến. Tài liệu này chứa nhiều hàm khá tiện lợi, hỗ trợ việc lập trình theo functional-style programming. Result
là kiểu dữ liệu chuẩn để xử lý lỗi như chúng ta sẽ thấy trong ngày 4.
String
String
là kiểu dữ liệu chuẩn sử dụng để lưu trữ chuỗi UTF-8 trên bộ nhớ heap, có thể được mở rộng:
String
implement Deref<Target = str>
, có nghĩa tất cả các hàm của str
đều có thể được gọi trên một biến kiểu String
.
Speaker Notes
This slide should take about 10 minutes.
String::new
trả về một chuỗi rỗng. Khi dữ liệu cần đẩy vào chuỗi đã được xác định trước, hãy sử dụngString::with_capacity
.String::len
trả về kích thước củaString
theo byte (có thể khác với số ký tự trong chuỗi).String::chars
trả về một con trỏ chạy dọc theo các ký tự của chuỗi. Lưu ý rằng mộtchar
có thể khác với một “ký tự” thông thường bởi vì một khái niệm gọi là grapheme clusters.- Khi nói đến chuỗi, ta có thể sử dụng
&str
hoặcString
đều được. - Khi một kiểu dữ liệu implement
Deref<Target = T>
, trình biên dịch sẽ cho phép gọi các hàm thuộc vềT
trên kiểu dữ liệu đó.- Chúng ta chưa đi sâu vào
Deref
trait, việc đề cập đếnDeref
ở đây chủ yếu là để giải thích cấu trúc của mục lục tài liệu. String
implementDeref<Target = str>
, nên các hàm củastr
đều có thể được gọi trên các biến kiểuString
.- So sánh
let s3 = s1.deref();
vàlet s3 = &*s1;
. Cái nào dễ hiểu hơn?
- Chúng ta chưa đi sâu vào
String
được được viết dựa trên một vector gồm nhiều byte, nên những hàm gọi được trên vector cũng có thể được gọi trênString
, nhưng đi kèm với một số điều kiện để đảm bảo các tính chất của chuỗi.- So sánh các cách truy cập phần tử trong một biến kiểu
String
:- Truy cập một ký tự bằng cách sử dụng
s3.chars().nth(i).unwrap()
vớii
nằm trong phạm vi của chuỗi, và vớii
nằm ngoài phạm vi của chuỗi. - Truy cập một xâu con bằng cách sử dụng
s3[0..4]
, với phạm vi của xâu con con giao thoa với ranh giới của các ký tự cận biên, hoặc với các ký tự cận biên hoàn toàn nằm bên trong xâu con. Ví dụ, truy cậps[5..7] với
s = “Xin chào”`.
- Truy cập một ký tự bằng cách sử dụng
- Nhiều kiểu dữ liệu có thể được chuyển đổi thành chuỗi bằng phương thức
to_string
. Trait này đã được implement sẵn cho tất cả các kiểu dữ liệu implementDisplay
, nên bất cứ giá trị nào có thể được định dạng cũng có thể được chuyển thành chuỗi.
Vec
Vec
là kiểu dữ liệu chuẩn dạng mảng có thể tự thay đổi kích thước:
Vec
implement Deref<Target = [T]>
, nên tất cả các hàm của slice đều có thể được gọi trên một biến kiểu Vec
.
Speaker Notes
This slide should take about 10 minutes.
- Tương tự
String
vàHashMap
,Vec
là một kiểu dữ liệu sử dụng để lưu trữ nhiều phần tử. Dữ liệu được lưu trữ trên bộ nhớ heap, nên không cần phải biết trước kích thước của dữ liệu tại thời điểm compile. Kích thước củaVec
có thể thay đổi tại trong quá trình chạy. Vec<T>
cũng là một kiểu dữ liệu generic, nhưng trong đa số trường hợp ta không cần phải chỉ rõ raT
. Hệ thống nội suy kiểu dữ liệu của Rust sẽ tự động xác địnhT
trong lần đầu tiên gọi hàmpush
.- Ta có thể sử dụng macro
vec![...]
thay vì gọi hàmVec::new()
để khởi tạo mộtVec
.vec![...]
còn có thể được dùng để khởi tạo vector với một số phần tử cho trước. - Để truy cập phần tử của một vector ta có thể sử dụng
[
]
, nhưng nếu phần tử được truy cập cập nằm ngoài phạm vi của vector, chương trình sẽ panic. Trong trường hợp này, ta có thể sử dụng hàmget
để trả về mộtOption
. Hàmpop
sẽ loại bỏ phần tử cuối cùng của vector. - Chúng ta sẽ đi sâu vào chi tiết về slice trong ngày 3. Bây giờ, học viên chỉ cần biết rằng một biến kiểu
Vec
cũng có thể sử dụng tất cả các hàm của slice.
HashMap
Một bảng băm chuẩn với cơ chế bảo vệ chống lại các cuộc tấn công HashDoS:
Speaker Notes
This slide should take about 10 minutes.
-
HashMap
không được định nghĩa trong prelude và cần phải được import vào scope trước khi sử dụng. -
Thử chạy đoạn code sau. Dòng đầu tiên sẽ kiểm tra xem một cuốn sách có tồn tại trong hashmap không, và nếu không trả về một giá trị thay thế. Dòng thứ hai sẽ chèn giá trị thay thế vào hashmap nếu cuốn sách không tồn tại.
let pc1 = page_counts .get("Harry Potter và hòn đá phù thủy") .unwrap_or(&336); let pc2 = page_counts .entry("Trò chơi sinh tử".to_string()) .or_insert(374);
-
Khác với
vec!
, Rust không cung cấp macrohashmap!
.-
Thay vào đó, kể từ phiên bản Rust 1.56, HashMap implement
From<[(K, V); N]>
, cho phép chúng ta dễ dàng khởi tạo một hashmap từ một mảng giá trị:let page_counts = HashMap::from([ ("Harry Potter và hòn đá phù thủy".to_string(), 336), ("Trò chơi sinh tử".to_string(), 374), ]);
-
-
HashMap cũng có thể được khởi tạo từ bất kỳ
Iterator
nào trả về các cặp key-value. -
Trong những ví dụ trên,
HashMap<String, i32>
được sử dụng thay vì&str
để làm cho ví dụ dễ hiểu hơn. Ta tất nhiên có thể sử dụng tham chiếu trong các cấu trúc dữ liệu, nhưng có thể gặp nhiều vấn đề với hệ thống kiểm tra vay mượn của Rust.- Thử xoá hàm
to_string()
từ ví dụ trên và xem chương trình có vẫn chạy không. Bạn nghĩ chúng ta sẽ gặp vấn đề ở đâu?
- Thử xoá hàm
-
HashMap đi kèm với nhiều kiểu dữ liệu chỉ sử dụng làm kiểu trả về của một số hàm, như
std::collections::hash_map::Keys
. Những kiểu dữ liệu này thường xuất hiện trong tài liệu của Rust. Hãy cho học viên xem tài liệu về kiểu dữ liệuKeys
, và liên hệ với hàmkeys
.
Exercise: Counter
Trong bài tập này, ta sẽ chuyển một cấu trúc dữ liệu đơn giản thành một cấu trúc dữ liệu generic. Chúng ta sẽ sử dụng một std::collections::HashMap
để theo dõi các giá trị đã xuất hiện và số lần xuất hiện của mỗi giá trị.
Phiên bản đầu tiên của Counter
chỉ hoạt động với các giá trị kiểu u32
. Hãy biến struct Counter
và các hàm của nó thành generic, để Counter
có thể theo dõi bất kỳ kiểu dữ liệu nào.
Nếu bạn hoàn thành sớm, hãy thử sử dụng hàm entry
để giảm đi một nửa số lần thực hiện hash lookup cần thiết để thực hiện hàm count
.
Đáp Án
Standard Library Traits
Phần này sẽ kéo dài khoảng 1 giờ và 40 phút, bao gồm:
Slide | Thời lượng |
---|---|
Comparisons | 10 minutes |
Operators | 10 minutes |
From and Into | 10 minutes |
Casting | 5 minutes |
Read and Write | 10 minutes |
Default, struct update syntax | 5 minutes |
Closures | 20 minutes |
Exercise: ROT13 | 30 minutes |
Speaker Notes
Tương tự như trong chương về các kiểu dữ liệu chuẩn, hãy dành thời gian để ôn lại tài liệu cho mỗi trait.
Nội dung của chương này khá dài, hãy cho học sinh nghỉ giải lao giữa chương.
Comparisons
Kiểu dữ liệu implement các trait này có thể được so sánh với nhau. Tất cả các trait này có thể được derive nếu các trường của kiểu dữ liệu sử dụng derive cũng implement các trait này.
PartialEq
và Eq
PartialEq
là một quan hệ tương đương một phần. Kiểu dữ liệu implement trait này phải định nghĩa hàm eq
, hàm ne
tự được định nghĩa dựa trên eq
. Các toán tử ==
và !=
sẽ gọi đến các hàm này.
Eq
là một quan hệ tương đương toàn phần (tính phản xạ, đối xứng và bắc cầu). Kiểu dữ liệu implement trait này mặc định implement PartialEq
. Các hàm yêu cầu quan hệ tương đương toàn phần sẽ sử dụng Eq
dưới dạng một trait bound.
PartialOrd
và Ord
PartialOrd
định nghĩa một quan hệ thứ tự một phần, với hàm partial_cmp
. Trait này được sử dụng để implement các toán tử <
, <=
, >=
, và >
.
Ord
là một quan hệ thứ tự toàn phần, với hàm cmp
trả về kiểu dữ liệu Ordering
.
Speaker Notes
This slide should take about 10 minutes.
PartialEq
có thể được implement để so sánh giữa các kiểu dữ liệu khác nhau, nhưng Eq
thì không, vì Eq
có tính phản xạ:
Trong thực tế, các trait này thường thường được derive, ít khi được implement.
Operators
Ta có thể thực hiện overloading toán tử thông qua các trait trong std::ops
:
Speaker Notes
This slide should take about 10 minutes.
Một số điểm cần thảo luận:
- Ta có thể implement
Add
cho&Point
. Việc này có ích trong những tình huống nào?- Trả lời:
Add:add
tiêu thụself
. Nếu kiểuT
mà ta muốn overloading toán tử không implementCopy
, ta cũng nên cân nhắc overload toán tử cho&T
. Như vậy ta có thể tránh việc clone không cần thiết tại thời điểm gọi hàm.
- Trả lời:
- Tại sao
Output
là một associated type? Có thể thay thếOutput
bằng một tham số generic cho hàm không?- Trả lời: Tham số generic của hàm được quyết định bởi người gọi hàm, nhưng associated types (như
Output
) được quyết định bởi người implement trait.
- Trả lời: Tham số generic của hàm được quyết định bởi người gọi hàm, nhưng associated types (như
- Ta có thể implement
Add
cho hai kiểu dữ liệu khác nhau, ví dụimpl Add<(i32, i32)> for Point
sẽ cộng một tuple vào mộtPoint
.
From
and Into
Ta có thể implement trait From
và Into
để đơn giản hoá việc chuyển đổi kiểu dữ liệu:
Into
sẽ tự động được implement khi From
được implement:
Speaker Notes
This slide should take about 10 minutes.
- Vì vậy, thông thường ta chỉ cần implement
From
, vì kiểu dữ liệu của bạn sẽ tự động cóInto
. - Ngược lại, khi ta muốn khai báo 1 hàm nhận “bất kỳ kiểu dữ liệu nào có thể chuyển đổi thành
String
”, ta nên sử dụngInto
. Như vậy, hàm được khai báo sẽ chấp nhận các kiểu dữ liệu implementFrom
và những kiểu dữ liệu chỉ implementInto
.
Casting
Rust không hỗ trợ ép kiểu ngầm định, nhưng hỗ trợ ép kiểu một cách tường minh với as
. Cú pháp này khá giống với cách ép kiểu trong ngôn ngữ C.
Kết quả của việc ép kiểu bằng as
luôn được định nghĩa rõ ràng trong Rust, cố định trên mọi nền tảng. Vì vậy, đôi lúc kết quả có thể không giống với dự kiến của bạn, ví dụ như khi đổi dấu hoặc chuyển về kiểu dữ liệu nhỏ hơn – hãy kiểm tra tài liệu cho chắc chắn.
Ép kiểu dữ liệu với as
là một công cụ khá mạnh nên dễ bị sử dụng sai, có thể gây ra những lỗi khó phát hiện khi thay đổi kiểu dữ liệu hoặc phạm vi giá trị của biến. Ép kiểu với as
nên được sử dụng chỉ khi ta chắc chắn rằng lỗi không thể xảy ra (ví dụ: lấy 32 bit cuối của một u64
với as u32
, bỏ qua giá trị của 32 bit đầu).
Nên sử dụng From
hoặc Into
thay vì as
cho những trường hợp ép kiểu không thể thất bại (ví dụ: u32
sang u64
), để đảm bảo rằng quá trình chuyển đổi thật sự không thể thất bại. Đối với những trường hợp ép kiểu có thể thất bại, nên sử dụng TryFrom
và TryInto
để xử lý lỗi khi ép kiểu (khi một giá trị không hoàn toàn phù hợp với kiểu dữ liệu đích).
Speaker Notes
This slide should take about 5 minutes.
Hãy cân nhắc cho học viên nghỉ giải lao sau slide này.
as
hoạt động tương tự như static cast trong C++. Không nên sử dụng as
nếu dữ liệu có thể bị mất khi ép kiểu, ít nhất phải có một comment giải thích rõ ràng lý do sử dụng as
.
Một trường hợp ngoại lệ là khi ép kiểu số nguyên sang usize
để sử dụng làm index trong array.
Read
and Write
Bằng cách sử dụng Read
và BufRead
, ta có thể đọc dữ liệu văn bản từ một mảng u8
:
Tương tự, Write
cho phép ta ghi dữ liệu văn bản vào một mảng u8
:
Trait Default
Kiểu dữ liệu implement trait Default
sẽ sở hữu một giá trị mặc định.
Speaker Notes
This slide should take about 5 minutes.
- Người dùng có thể trực tiếp implement trait này, hoặc derive trait này bằng
#[derive(Default)]
. - Khi derive trait này, từng miền của giá trị mặc định được tạo ra sẽ được gán bằng giá trị mặc định của kiểu dữ liệu tương ứng.
- Vì vậy tất cả các miền của struct cũng phải implement
Default
.
- Vì vậy tất cả các miền của struct cũng phải implement
- Kiểu dữ liệu chuẩn của Rust thường hay implement trait
Default
(như0
,""
, vân vân). - Trait này rất hữu dụng khi ta cần khởi tạo struct chỉ với một ít miền.
- Vì các kiểu dữ liệu thường hay implment
Default
, thư viện chuẩn của Rust cũng cung cấp một số hàm giúp người dùng có thể tận dụng giá trị mặc định của biến. - Dấu
..
còn được gọi là ký hiệu update struct.
Closures
Closures or lambda expressions have types which cannot be named. However, they implement special Fn
, FnMut
, and FnOnce
traits:
Speaker Notes
This slide should take about 20 minutes.
An Fn
(e.g. add_3
) neither consumes nor mutates captured values, or perhaps captures nothing at all. It can be called multiple times concurrently.
An FnMut
(e.g. accumulate
) might mutate captured values. You can call it multiple times, but not concurrently.
If you have an FnOnce
(e.g. multiply_sum
), you may only call it once. It might consume captured values.
FnMut
is a subtype of FnOnce
. Fn
is a subtype of FnMut
and FnOnce
. I.e. you can use an FnMut
wherever an FnOnce
is called for, and you can use an Fn
wherever an FnMut
or FnOnce
is called for.
When you define a function that takes a closure, you should take FnOnce
if you can (i.e. you call it once), or FnMut
else, and last Fn
. This allows the most flexibility for the caller.
In contrast, when you have a closure, the most flexible you can have is Fn
(it can be passed everywhere), then FnMut
, and lastly FnOnce
.
The compiler also infers Copy
(e.g. for add_3
) and Clone
(e.g. multiply_sum
), depending on what the closure captures.
By default, closures will capture by reference if they can. The move
keyword makes them capture by value.
Exercise: ROT13
In this example, you will implement the classic “ROT13” cipher. Copy this code to the playground, and implement the missing bits. Only rotate ASCII alphabetic characters, to ensure the result is still valid UTF-8.
use std::io::Read;
struct RotDecoder<R: Read> {
input: R,
rot: u8,
}
// Implement the `Read` trait for `RotDecoder`.
fn main() {
let mut rot =
RotDecoder { input: "Gb trg gb gur bgure fvqr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
println!("{}", result);
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn joke() {
let mut rot =
RotDecoder { input: "Gb trg gb gur bgure fvqr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq!(&result, "To get to the other side!");
}
#[test]
fn binary() {
let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> { input: input.as_ref(), rot: 13 };
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {
if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());
}
}
}
}
What happens if you chain two RotDecoder
instances together, each rotating by 13 characters?
Đáp Án
Welcome to Day 3
Today, we will cover:
- Memory management, lifetimes, and the borrow checker: how Rust ensures memory safety.
- Smart pointers: standard library pointer types.
Mục lục
Buổi học nên kéo dài khoảng 2 tiếng và 20 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Memory Management | 1 hour |
Smart Pointers | 55 minutes |
Memory Management
Phần này sẽ kéo dài khoảng 1 giờ, bao gồm:
Slide | Thời lượng |
---|---|
Review of Program Memory | 5 minutes |
Approaches to Memory Management | 10 minutes |
Ownership | 5 minutes |
Move Semantics | 5 minutes |
Clone | 2 minutes |
Copy Types | 5 minutes |
Drop | 10 minutes |
Exercise: Builder Type | 20 minutes |
Review of Program Memory
Programs allocate memory in two ways:
-
Stack: Continuous area of memory for local variables.
- Values have fixed sizes known at compile time.
- Extremely fast: just move a stack pointer.
- Easy to manage: follows function calls.
- Great memory locality.
-
Heap: Storage of values outside of function calls.
- Values have dynamic sizes determined at runtime.
- Slightly slower than the stack: some book-keeping needed.
- No guarantee of memory locality.
Example
Creating a String
puts fixed-sized metadata on the stack and dynamically sized data, the actual string, on the heap:
Speaker Notes
This slide should take about 5 minutes.
-
Mention that a
String
is backed by aVec
, so it has a capacity and length and can grow if mutable via reallocation on the heap. -
If students ask about it, you can mention that the underlying memory is heap allocated using the System Allocator and custom allocators can be implemented using the Allocator API
More to Explore
We can inspect the memory layout with unsafe
Rust. However, you should point out that this is rightfully unsafe!
Approaches to Memory Management
Traditionally, languages have fallen into two broad categories:
- Full control via manual memory management: C, C++, Pascal, …
- Programmer decides when to allocate or free heap memory.
- Programmer must determine whether a pointer still points to valid memory.
- Studies show, programmers make mistakes.
- Full safety via automatic memory management at runtime: Java, Python, Go, Haskell, …
- A runtime system ensures that memory is not freed until it can no longer be referenced.
- Typically implemented with reference counting, garbage collection, or RAII.
Rust offers a new mix:
Full control and safety via compile time enforcement of correct memory management.
It does this with an explicit ownership concept.
Speaker Notes
This slide should take about 10 minutes.
This slide is intended to help students coming from other languages to put Rust in context.
-
C must manage heap manually with
malloc
andfree
. Common errors include forgetting to callfree
, calling it multiple times for the same pointer, or dereferencing a pointer after the memory it points to has been freed. -
C++ has tools like smart pointers (
unique_ptr
,shared_ptr
) that take advantage of language guarantees about calling destructors to ensure memory is freed when a function returns. It is still quite easy to mis-use these tools and create similar bugs to C. -
Java, Go, and Python rely on the garbage collector to identify memory that is no longer reachable and discard it. This guarantees that any pointer can be dereferenced, eliminating use-after-free and other classes of bugs. But, GC has a runtime cost and is difficult to tune properly.
Rust’s ownership and borrowing model can, in many cases, get the performance of C, with alloc and free operations precisely where they are required – zero cost. It also provides tools similar to C++’s smart pointers. When required, other options such as reference counting are available, and there are even third-party crates available to support runtime garbage collection (not covered in this class).
Ownership
All variable bindings have a scope where they are valid and it is an error to use a variable outside its scope:
We say that the variable owns the value. Every Rust value has precisely one owner at all times.
At the end of the scope, the variable is dropped and the data is freed. A destructor can run here to free up resources.
Speaker Notes
This slide should take about 5 minutes.
Students familiar with garbage-collection implementations will know that a garbage collector starts with a set of “roots” to find all reachable memory. Rust’s “single owner” principle is a similar idea.
Move Semantics
An assignment will transfer ownership between variables:
- The assignment of
s1
tos2
transfers ownership. - When
s1
goes out of scope, nothing happens: it does not own anything. - When
s2
goes out of scope, the string data is freed.
Before move to s2
:
After move to s2
:
When you pass a value to a function, the value is assigned to the function parameter. This transfers ownership:
Speaker Notes
This slide should take about 5 minutes.
-
Mention that this is the opposite of the defaults in C++, which copies by value unless you use
std::move
(and the move constructor is defined!). -
It is only the ownership that moves. Whether any machine code is generated to manipulate the data itself is a matter of optimization, and such copies are aggressively optimized away.
-
Simple values (such as integers) can be marked
Copy
(see later slides). -
In Rust, clones are explicit (by using
clone
).
In the say_hello
example:
- With the first call to
say_hello
,main
gives up ownership ofname
. Afterwards,name
cannot be used anymore withinmain
. - The heap memory allocated for
name
will be freed at the end of thesay_hello
function. main
can retain ownership if it passesname
as a reference (&name
) and ifsay_hello
accepts a reference as a parameter.- Alternatively,
main
can pass a clone ofname
in the first call (name.clone()
). - Rust makes it harder than C++ to inadvertently create copies by making move semantics the default, and by forcing programmers to make clones explicit.
More to Explore
Defensive Copies in Modern C++
Modern C++ solves this differently:
std::string s1 = "Cpp";
std::string s2 = s1; // Duplicate the data in s1.
- The heap data from
s1
is duplicated ands2
gets its own independent copy. - When
s1
ands2
go out of scope, they each free their own memory.
Before copy-assignment:
After copy-assignment:
Các điểm chính:
-
C++ has made a slightly different choice than Rust. Because
=
copies data, the string data has to be cloned. Otherwise we would get a double-free when either string goes out of scope. -
C++ also has
std::move
, which is used to indicate when a value may be moved from. If the example had beens2 = std::move(s1)
, no heap allocation would take place. After the move,s1
would be in a valid but unspecified state. Unlike Rust, the programmer is allowed to keep usings1
. -
Unlike Rust,
=
in C++ can run arbitrary code as determined by the type which is being copied or moved.
Clone
Sometimes you want to make a copy of a value. The Clone
trait accomplishes this.
Speaker Notes
This slide should take about 2 minutes.
-
The idea of
Clone
is to make it easy to spot where heap allocations are occurring. Look for.clone()
and a few others likevec!
orBox::new
. -
It’s common to “clone your way out” of problems with the borrow checker, and return later to try to optimize those clones away.
-
clone
generally performs a deep copy of the value, meaning that if you e.g. clone an array, all of the elements of the array are cloned as well. -
The behavior for
clone
is user-defined, so it can perform custom cloning logic if needed.
Copy Types
While move semantics are the default, certain types are copied by default:
These types implement the Copy
trait.
You can opt-in your own types to use copy semantics:
- After the assignment, both
p1
andp2
own their own data. - We can also use
p1.clone()
to explicitly copy the data.
Speaker Notes
This slide should take about 5 minutes.
Copying and cloning are not the same thing:
- Copying refers to bitwise copies of memory regions and does not work on arbitrary objects.
- Copying does not allow for custom logic (unlike copy constructors in C++).
- Cloning is a more general operation and also allows for custom behavior by implementing the
Clone
trait. - Copying does not work on types that implement the
Drop
trait.
In the above example, try the following:
- Add a
String
field tostruct Point
. It will not compile becauseString
is not aCopy
type. - Remove
Copy
from thederive
attribute. The compiler error is now in theprintln!
forp1
. - Show that it works if you clone
p1
instead.
The Drop
Trait
Values which implement Drop
can specify code to run when they go out of scope:
Speaker Notes
This slide should take about 8 minutes.
- Note that
std::mem::drop
is not the same asstd::ops::Drop::drop
. - Values are automatically dropped when they go out of scope.
- When a value is dropped, if it implements
std::ops::Drop
then itsDrop::drop
implementation will be called. - All its fields will then be dropped too, whether or not it implements
Drop
. std::mem::drop
is just an empty function that takes any value. The significance is that it takes ownership of the value, so at the end of its scope it gets dropped. This makes it a convenient way to explicitly drop values earlier than they would otherwise go out of scope.- This can be useful for objects that do some work on
drop
: releasing locks, closing files, etc.
- This can be useful for objects that do some work on
Một số điểm cần thảo luận:
- Why doesn’t
Drop::drop
takeself
?- Short-answer: If it did,
std::mem::drop
would be called at the end of the block, resulting in another call toDrop::drop
, and a stack overflow!
- Short-answer: If it did,
- Try replacing
drop(a)
witha.drop()
.
Exercise: Builder Type
In this example, we will implement a complex data type that owns all of its data. We will use the “builder pattern” to support building a new value piece-by-piece, using convenience functions.
Fill in the missing pieces.
Đáp Án
Smart Pointers
Phần này sẽ kéo dài khoảng 55 phút, bao gồm:
Slide | Thời lượng |
---|---|
Box | 10 minutes |
Rc | 5 minutes |
Trait Objects | 10 minutes |
Exercise: Binary Tree | 30 minutes |
Box<T>
Box
is an owned pointer to data on the heap:
Box<T>
implements Deref<Target = T>
, which means that you can call methods from T
directly on a Box<T>
.
Recursive data types or data types with dynamic sizes need to use a Box
:
Speaker Notes
This slide should take about 8 minutes.
-
Box
is likestd::unique_ptr
in C++, except that it’s guaranteed to be not null. -
A
Box
can be useful when you:- have a type whose size that can’t be known at compile time, but the Rust compiler wants to know an exact size.
- want to transfer ownership of a large amount of data. To avoid copying large amounts of data on the stack, instead store the data on the heap in a
Box
so only the pointer is moved.
-
If
Box
was not used and we attempted to embed aList
directly into theList
, the compiler would not be able to compute a fixed size for the struct in memory (theList
would be of infinite size). -
Box
solves this problem as it has the same size as a regular pointer and just points at the next element of theList
in the heap. -
Remove the
Box
in the List definition and show the compiler error. We get the message “recursive without indirection”, because for data recursion, we have to use indirection, aBox
or reference of some kind, instead of storing the value directly.
More to Explore
Niche Optimization
Though Box
looks like std::unique_ptr
in C++, it cannot be empty/null. This makes Box
one of the types that allow the compiler to optimize storage of some enums.
For example, Option<Box<T>>
has the same size, as just Box<T>
, because compiler uses NULL-value to discriminate variants instead of using explicit tag (“Null Pointer Optimization”):
Rc
Rc
is a reference-counted shared pointer. Use this when you need to refer to the same data from multiple places:
- See
Arc
andMutex
if you are in a multi-threaded context. - You can downgrade a shared pointer into a
Weak
pointer to create cycles that will get dropped.
Speaker Notes
This slide should take about 5 minutes.
Rc
’s count ensures that its contained value is valid for as long as there are references.Rc
in Rust is likestd::shared_ptr
in C++.Rc::clone
is cheap: it creates a pointer to the same allocation and increases the reference count. Does not make a deep clone and can generally be ignored when looking for performance issues in code.make_mut
actually clones the inner value if necessary (“clone-on-write”) and returns a mutable reference.- Use
Rc::strong_count
to check the reference count. Rc::downgrade
gives you a weakly reference-counted object to create cycles that will be dropped properly (likely in combination withRefCell
).
Trait Objects
Trait objects allow for values of different types, for instance in a collection:
Memory layout after allocating pets
:
Speaker Notes
This slide should take about 10 minutes.
- Types that implement a given trait may be of different sizes. This makes it impossible to have things like
Vec<dyn Pet>
in the example above. dyn Pet
is a way to tell the compiler about a dynamically sized type that implementsPet
.- In the example,
pets
is allocated on the stack and the vector data is on the heap. The two vector elements are fat pointers:- A fat pointer is a double-width pointer. It has two components: a pointer to the actual object and a pointer to the virtual method table (vtable) for the
Pet
implementation of that particular object. - The data for the
Dog
named Fido is thename
andage
fields. TheCat
has alives
field.
- A fat pointer is a double-width pointer. It has two components: a pointer to the actual object and a pointer to the virtual method table (vtable) for the
- Compare these outputs in the above example:
println!("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>()); println!("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>()); println!("{}", std::mem::size_of::<&dyn Pet>()); println!("{}", std::mem::size_of::<Box<dyn Pet>>());
Exercise: Binary Tree
A binary tree is a tree-type data structure where every node has two children (left and right). We will create a tree where each node stores a value. For a given node N, all nodes in a N’s left subtree contain smaller values, and all nodes in N’s right subtree will contain larger values.
Implement the following types, so that the given tests pass.
Extra Credit: implement an iterator over a binary tree that returns the values in order.
Đáp Án
Welcome Back
Buổi học nên kéo dài khoảng 1 tiếng và 55 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Borrowing | 55 minutes |
Lifetimes | 50 minutes |
Borrowing
Phần này sẽ kéo dài khoảng 55 phút, bao gồm:
Slide | Thời lượng |
---|---|
Borrowing a Value | 10 minutes |
Borrow Checking | 10 minutes |
Borrow Errors | 3 minutes |
Interior Mutability | 10 minutes |
Exercise: Health Statistics | 20 minutes |
Borrowing a Value
As we saw before, instead of transferring ownership when calling a function, you can let a function borrow the value:
- The
add
function borrows two points and returns a new point. - The caller retains ownership of the inputs.
Speaker Notes
This slide should take about 10 minutes.
This slide is a review of the material on references from day 1, expanding slightly to include function arguments and return values.
More to Explore
Notes on stack returns and inlining:
-
Demonstrate that the return from
add
is cheap because the compiler can eliminate the copy operation, by inlining the call to add into main. Change the above code to print stack addresses and run it on the Playground or look at the assembly in Godbolt. In the “DEBUG” optimization level, the addresses should change, while they stay the same when changing to the “RELEASE” setting: -
The Rust compiler can do automatic inlining, that can be disabled on a function level with
#[inline(never)]
. -
Once disabled, the printed address will change on all optimization levels. Looking at Godbolt or Playground, one can see that in this case, the return of the value depends on the ABI, e.g. on amd64 the two i32 that is making up the point will be returned in 2 registers (eax and edx).
Borrow Checking
Rust’s borrow checker puts constraints on the ways you can borrow values. For a given value, at any time:
- You can have one or more shared references to the value, or
- You can have exactly one exclusive reference to the value.
Speaker Notes
This slide should take about 10 minutes.
- Note that the requirement is that conflicting references not exist at the same point. It does not matter where the reference is dereferenced.
- The above code does not compile because
a
is borrowed as mutable (throughc
) and as immutable (throughb
) at the same time. - Move the
println!
statement forb
before the scope that introducesc
to make the code compile. - After that change, the compiler realizes that
b
is only ever used before the new mutable borrow ofa
throughc
. This is a feature of the borrow checker called “non-lexical lifetimes”. - The exclusive reference constraint is quite strong. Rust uses it to ensure that data races do not occur. Rust also relies on this constraint to optimize code. For example, a value behind a shared reference can be safely cached in a register for the lifetime of that reference.
- The borrow checker is designed to accommodate many common patterns, such as taking exclusive references to different fields in a struct at the same time. But, there are some situations where it doesn’t quite “get it” and this often results in “fighting with the borrow checker.”
Borrow Errors
As a concrete example of how these borrowing rules prevent memory errors, consider the case of modifying a collection while there are references to its elements:
Similarly, consider the case of iterator invalidation:
Speaker Notes
This slide should take about 3 minutes.
- In both of these cases, modifying the collection by pushing new elements into it can potentially invalidate existing references to the collection’s elements if the collection has to reallocate.
Interior Mutability
In some situations, it’s necessary to modify data behind a shared (read-only) reference. For example, a shared data structure might have an internal cache, and wish to update that cache from read-only methods.
The “interior mutability” pattern allows exclusive (mutable) access behind a shared reference. The standard library provides several ways to do this, all while still ensuring safety, typically by performing a runtime check.
RefCell
Cell
Cell
wraps a value and allows getting or setting the value, even with a shared reference to the Cell
. However, it does not allow any references to the value. Since there are no references, borrowing rules cannot be broken.
Speaker Notes
This slide should take about 10 minutes.
The main thing to take away from this slide is that Rust provides safe ways to modify data behind a shared reference. There are a variety of ways to ensure that safety, and RefCell
and Cell
are two of them.
-
RefCell
enforces Rust’s usual borrowing rules (either multiple shared references or a single exclusive reference) with a runtime check. In this case, all borrows are very short and never overlap, so the checks always succeed.- The extra block in the
RefCell
example is to end the borrow created by the call toborrow_mut
before we print the cell. Trying to print a borrowedRefCell
just shows the message"{borrowed}"
.
- The extra block in the
-
Cell
is a simpler means to ensure safety: it has aset
method that takes&self
. This needs no runtime check, but requires moving values, which can have its own cost.
Exercise: Health Statistics
You’re working on implementing a health-monitoring system. As part of that, you need to keep track of users’ health statistics.
You’ll start with a stubbed function in an impl
block as well as a User
struct definition. Your goal is to implement the stubbed out method on the User
struct
defined in the impl
block.
Copy the code below to https://play.rust-lang.org/ and fill in the missing method:
// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]
#![allow(dead_code)]
pub struct User {
name: String,
age: u32,
height: f32,
visit_count: usize,
last_blood_pressure: Option<(u32, u32)>,
}
pub struct Measurements {
height: f32,
blood_pressure: (u32, u32),
}
pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,
height_change: f32,
blood_pressure_change: Option<(i32, i32)>,
}
impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {
Self { name, age, height, visit_count: 0, last_blood_pressure: None }
}
pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport {
todo!("Update a user's statistics based on measurements from a visit to the doctor")
}
}
fn main() {
let bob = User::new(String::from("Bob"), 32, 155.2);
println!("I'm {} and my age is {}", bob.name, bob.age);
}
#[test]
fn test_visit() {
let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq!(bob.visit_count, 0);
let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (120, 80) });
assert_eq!(report.patient_name, "Bob");
assert_eq!(report.visit_count, 1);
assert_eq!(report.blood_pressure_change, None);
let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (115, 76) });
assert_eq!(report.visit_count, 2);
assert_eq!(report.blood_pressure_change, Some((-5, -4)));
}
Đáp Án
Lifetimes
Phần này sẽ kéo dài khoảng 50 phút, bao gồm:
Slide | Thời lượng |
---|---|
Lifetime Annotations | 10 minutes |
Lifetime Elision | 5 minutes |
Struct Lifetimes | 5 minutes |
Exercise: Protobuf Parsing | 30 minutes |
Lifetime Annotations
A reference has a lifetime, which must not “outlive” the value it refers to. This is verified by the borrow checker.
The lifetime can be implicit - this is what we have seen so far. Lifetimes can also be explicit: &'a Point
, &'document str
. Lifetimes start with '
and 'a
is a typical default name. Read &'a Point
as “a borrowed Point
which is valid for at least the lifetime a
”.
Lifetimes are always inferred by the compiler: you cannot assign a lifetime yourself. Explicit lifetime annotations create constraints where there is ambiguity; the compiler verifies that there is a valid solution.
Lifetimes become more complicated when considering passing values to and returning values from functions.
Speaker Notes
This slide should take about 10 minutes.
In this example, the compiler does not know what lifetime to infer for p3
. Looking inside the function body shows that it can only safely assume that p3
’s lifetime is the shorter of p1
and p2
. But just like types, Rust requires explicit annotations of lifetimes on function arguments and return values.
Add 'a
appropriately to left_most
:
fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
This says, “given p1 and p2 which both outlive 'a
, the return value lives for at least 'a
.
In common cases, lifetimes can be elided, as described on the next slide.
Lifetimes in Function Calls
Lifetimes for function arguments and return values must be fully specified, but Rust allows lifetimes to be elided in most cases with a few simple rules. This is not inference – it is just a syntactic shorthand.
- Each argument which does not have a lifetime annotation is given one.
- If there is only one argument lifetime, it is given to all un-annotated return values.
- If there are multiple argument lifetimes, but the first one is for
self
, that lifetime is given to all un-annotated return values.
Speaker Notes
This slide should take about 5 minutes.
In this example, cab_distance
is trivially elided.
The nearest
function provides another example of a function with multiple references in its arguments that requires explicit annotation.
Try adjusting the signature to “lie” about the lifetimes returned:
fn nearest<'a, 'q>(points: &'a [Point], query: &'q Point) -> Option<&'q Point> {
This won’t compile, demonstrating that the annotations are checked for validity by the compiler. Note that this is not the case for raw pointers (unsafe), and this is a common source of errors with unsafe Rust.
Students may ask when to use lifetimes. Rust borrows always have lifetimes. Most of the time, elision and type inference mean these don’t need to be written out. In more complicated cases, lifetime annotations can help resolve ambiguity. Often, especially when prototyping, it’s easier to just work with owned data by cloning values where necessary.
Lifetimes in Data Structures
If a data type stores borrowed data, it must be annotated with a lifetime:
Speaker Notes
This slide should take about 5 minutes.
- In the above example, the annotation on
Highlight
enforces that the data underlying the contained&str
lives at least as long as any instance ofHighlight
that uses that data. - If
text
is consumed before the end of the lifetime offox
(ordog
), the borrow checker throws an error. - Types with borrowed data force users to hold on to the original data. This can be useful for creating lightweight views, but it generally makes them somewhat harder to use.
- When possible, make data structures own their data directly.
- Some structs with multiple references inside can have more than one lifetime annotation. This can be necessary if there is a need to describe lifetime relationships between the references themselves, in addition to the lifetime of the struct itself. Those are very advanced use cases.
Exercise: Protobuf Parsing
In this exercise, you will build a parser for the protobuf binary encoding. Don’t worry, it’s simpler than it seems! This illustrates a common parsing pattern, passing slices of data. The underlying data itself is never copied.
Fully parsing a protobuf message requires knowing the types of the fields, indexed by their field numbers. That is typically provided in a proto
file. In this exercise, we’ll encode that information into match
statements in functions that get called for each field.
We’ll use the following proto:
message PhoneNumber {
optional string number = 1;
optional string type = 2;
}
message Person {
optional string name = 1;
optional int32 id = 2;
repeated PhoneNumber phones = 3;
}
A proto message is encoded as a series of fields, one after the next. Each is implemented as a “tag” followed by the value. The tag contains a field number (e.g., 2
for the id
field of a Person
message) and a wire type defining how the payload should be determined from the byte stream.
Integers, including the tag, are represented with a variable-length encoding called VARINT. Luckily, parse_varint
is defined for you below. The given code also defines callbacks to handle Person
and PhoneNumber
fields, and to parse a message into a series of calls to those callbacks.
What remains for you is to implement the parse_field
function and the ProtoMessage
trait for Person
and PhoneNumber
.
Đáp Án
Welcome to Day 4
Today we will cover topics relating to building large-scale software in Rust:
- Iterators: a deep dive on the
Iterator
trait. - Modules and visibility.
- Testing.
- Error handling: panics,
Result
, and the try operator?
. - Unsafe Rust: the escape hatch when you can’t express yourself in safe Rust.
Mục lục
Buổi học nên kéo dài khoảng 2 tiếng và 40 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Lời Chào Mừng | 3 minutes |
Iterators | 45 minutes |
Modules | 40 minutes |
Testing | 45 minutes |
Iterators
Phần này sẽ kéo dài khoảng 45 phút, bao gồm:
Slide | Thời lượng |
---|---|
Iterator | 5 minutes |
IntoIterator | 5 minutes |
FromIterator | 5 minutes |
Exercise: Iterator Method Chaining | 30 minutes |
Iterator
The Iterator
trait supports iterating over values in a collection. It requires a next
method and provides lots of methods. Many standard library types implement Iterator
, and you can implement it yourself, too:
Speaker Notes
This slide should take about 5 minutes.
-
The
Iterator
trait implements many common functional programming operations over collections (e.g.map
,filter
,reduce
, etc). This is the trait where you can find all the documentation about them. In Rust these functions should produce the code as efficient as equivalent imperative implementations. -
IntoIterator
is the trait that makes for loops work. It is implemented by collection types such asVec<T>
and references to them such as&Vec<T>
and&[T]
. Ranges also implement it. This is why you can iterate over a vector withfor i in some_vec { .. }
butsome_vec.next()
doesn’t exist.
IntoIterator
The Iterator
trait tells you how to iterate once you have created an iterator. The related trait IntoIterator
defines how to create an iterator for a type. It is used automatically by the for
loop.
Speaker Notes
This slide should take about 5 minutes.
Click through to the docs for IntoIterator
. Every implementation of IntoIterator
must declare two types:
Item
: the type to iterate over, such asi8
,IntoIter
: theIterator
type returned by theinto_iter
method.
Note that IntoIter
and Item
are linked: the iterator must have the same Item
type, which means that it returns Option<Item>
The example iterates over all combinations of x and y coordinates.
Try iterating over the grid twice in main
. Why does this fail? Note that IntoIterator::into_iter
takes ownership of self
.
Fix this issue by implementing IntoIterator
for &Grid
and storing a reference to the Grid
in GridIter
.
The same problem can occur for standard library types: for e in some_vector
will take ownership of some_vector
and iterate over owned elements from that vector. Use for e in &some_vector
instead, to iterate over references to elements of some_vector
.
FromIterator
FromIterator
lets you build a collection from an Iterator
.
Speaker Notes
This slide should take about 5 minutes.
Iterator
implements
fn collect<B>(self) -> B
where
B: FromIterator<Self::Item>,
Self: Sized
There are two ways to specify B
for this method:
- With the “turbofish”:
some_iterator.collect::<COLLECTION_TYPE>()
, as shown. The_
shorthand used here lets Rust infer the type of theVec
elements. - With type inference:
let prime_squares: Vec<_> = some_iterator.collect()
. Rewrite the example to use this form.
There are basic implementations of FromIterator
for Vec
, HashMap
, etc. There are also more specialized implementations which let you do cool things like convert an Iterator<Item = Result<V, E>>
into a Result<Vec<V>, E>
.
Exercise: Iterator Method Chaining
In this exercise, you will need to find and use some of the provided methods in the Iterator
trait to implement a complex calculation.
Copy the following code to https://play.rust-lang.org/ and make the tests pass. Use an iterator expression and collect
the result to construct the return value.
Đáp Án
Modules
Phân đoạn này sẽ kéo dài khoảng 40 phút, bao gồm:
Slide | Thời lượng |
---|---|
Modules | 3 minutes |
Filesystem Hierarchy | 5 minutes |
Visibility | 5 minutes |
use, super, self | 10 minutes |
Exercise: Modules for a GUI Library | 15 minutes |
Modules
We have seen how impl
blocks let us namespace functions to a type.
Similarly, mod
lets us namespace types and functions:
Speaker Notes
This slide should take about 3 minutes.
- Packages provide functionality and include a
Cargo.toml
file that describes how to build a bundle of 1+ crates. - Crates are a tree of modules, where a binary crate creates an executable and a library crate compiles to a library.
- Modules define organization, scope, and are the focus of this section.
Filesystem Hierarchy
Omitting the module content will tell Rust to look for it in another file:
This tells rust that the garden
module content is found at src/garden.rs
. Similarly, a garden::vegetables
module can be found at src/garden/vegetables.rs
.
The crate
root is in:
src/lib.rs
(for a library crate)src/main.rs
(for a binary crate)
Modules defined in files can be documented, too, using “inner doc comments”. These document the item that contains them – in this case, a module.
Speaker Notes
This slide should take about 5 minutes.
-
Before Rust 2018, modules needed to be located at
module/mod.rs
instead ofmodule.rs
, and this is still a working alternative for editions after 2018. -
The main reason to introduce
filename.rs
as alternative tofilename/mod.rs
was because many files namedmod.rs
can be hard to distinguish in IDEs. -
Deeper nesting can use folders, even if the main module is a file:
src/ ├── main.rs ├── top_module.rs └── top_module/ └── sub_module.rs
-
The place rust will look for modules can be changed with a compiler directive:
#[path = "some/path.rs"] mod some_module;
This is useful, for example, if you would like to place tests for a module in a file named
some_module_test.rs
, similar to the convention in Go.
Visibility
Modules are a privacy boundary:
- Module items are private by default (hides implementation details).
- Parent and sibling items are always visible.
- In other words, if an item is visible in module
foo
, it’s visible in all the descendants offoo
.
Speaker Notes
This slide should take about 5 minutes.
- Use the
pub
keyword to make modules public.
Additionally, there are advanced pub(...)
specifiers to restrict the scope of public visibility.
- See the Rust Reference.
- Configuring
pub(crate)
visibility is a common pattern. - Less commonly, you can give visibility to a specific path.
- In any case, visibility must be granted to an ancestor module (and all of its descendants).
use, super, self
A module can bring symbols from another module into scope with use
. You will typically see something like this at the top of each module:
Paths
Paths are resolved as follows:
-
As a relative path:
foo
orself::foo
refers tofoo
in the current module,super::foo
refers tofoo
in the parent module.
-
As an absolute path:
crate::foo
refers tofoo
in the root of the current crate,bar::foo
refers tofoo
in thebar
crate.
Speaker Notes
This slide should take about 8 minutes.
-
It is common to “re-export” symbols at a shorter path. For example, the top-level
lib.rs
in a crate might havemod storage; pub use storage::disk::DiskStorage; pub use storage::network::NetworkStorage;
making
DiskStorage
andNetworkStorage
available to other crates with a convenient, short path. -
For the most part, only items that appear in a module need to be
use
’d. However, a trait must be in scope to call any methods on that trait, even if a type implementing that trait is already in scope. For example, to use theread_to_string
method on a type implementing theRead
trait, you need touse std::io::Read
. -
The
use
statement can have a wildcard:use std::io::*
. This is discouraged because it is not clear which items are imported, and those might change over time.
Exercise: Modules for a GUI Library
In this exercise, you will reorganize a small GUI Library implementation. This library defines a Widget
trait and a few implementations of that trait, as well as a main
function.
It is typical to put each type or set of closely-related types into its own module, so each widget type should get its own module.
Cargo Setup
The Rust playground only supports one file, so you will need to make a Cargo project on your local filesystem:
cargo init gui-modules
cd gui-modules
cargo run
Edit the resulting src/main.rs
to add mod
statements, and add additional files in the src
directory.
Source
Here’s the single-module implementation of the GUI library:
pub trait Widget {
/// Natural width of `self`.
fn width(&self) -> usize;
/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);
/// Draw the widget on standard output.
fn draw(&self) {
let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");
}
}
pub struct Label {
label: String,
}
impl Label {
fn new(label: &str) -> Label {
Label { label: label.to_owned() }
}
}
pub struct Button {
label: Label,
}
impl Button {
fn new(label: &str) -> Button {
Button { label: Label::new(label) }
}
}
pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,
}
impl Window {
fn new(title: &str) -> Window {
Window { title: title.to_owned(), widgets: Vec::new() }
}
fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);
}
fn inner_width(&self) -> usize {
std::cmp::max(
self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),
)
}
}
impl Widget for Window {
fn width(&self) -> usize {
// Add 4 paddings for borders
self.inner_width() + 4
}
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let mut inner = String::new();
for widget in &self.widgets {
widget.draw_into(&mut inner);
}
let inner_width = self.inner_width();
// TODO: Change draw_into to return Result<(), std::fmt::Error>. Then use the
// ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {
writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
}
}
impl Widget for Button {
fn width(&self) -> usize {
self.label.width() + 8 // add a bit of padding
}
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);
writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {
writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();
}
}
impl Widget for Label {
fn width(&self) -> usize {
self.label.lines().map(|line| line.chars().count()).max().unwrap_or(0)
}
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
writeln!(buffer, "{}", &self.label).unwrap();
}
}
fn main() {
let mut window = Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(Button::new("Click me!")));
window.draw();
}
Speaker Notes
This slide and its sub-slides should take about 15 minutes.
Encourage students to divide the code in a way that feels natural for them, and get accustomed to the required mod
, use
, and pub
declarations. Afterward, discuss what organizations are most idiomatic.
Đáp Án
src
├── main.rs
├── widgets
│ ├── button.rs
│ ├── label.rs
│ └── window.rs
└── widgets.rs
// ---- src/widgets.rs ----
mod button;
mod label;
mod window;
pub trait Widget {
/// Natural width of `self`.
fn width(&self) -> usize;
/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);
/// Draw the widget on standard output.
fn draw(&self) {
let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");
}
}
pub use button::Button;
pub use label::Label;
pub use window::Window;
// ---- src/widgets/label.rs ----
use super::Widget;
pub struct Label {
label: String,
}
impl Label {
pub fn new(label: &str) -> Label {
Label { label: label.to_owned() }
}
}
impl Widget for Label {
fn width(&self) -> usize {
// ANCHOR_END: Label-width
self.label.lines().map(|line| line.chars().count()).max().unwrap_or(0)
}
// ANCHOR: Label-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
// ANCHOR_END: Label-draw_into
writeln!(buffer, "{}", &self.label).unwrap();
}
}
// ---- src/widgets/button.rs ----
use super::{Label, Widget};
pub struct Button {
label: Label,
}
impl Button {
pub fn new(label: &str) -> Button {
Button { label: Label::new(label) }
}
}
impl Widget for Button {
fn width(&self) -> usize {
// ANCHOR_END: Button-width
self.label.width() + 8 // add a bit of padding
}
// ANCHOR: Button-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
// ANCHOR_END: Button-draw_into
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);
writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {
writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();
}
}
// ---- src/widgets/window.rs ----
use super::Widget;
pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,
}
impl Window {
pub fn new(title: &str) -> Window {
Window { title: title.to_owned(), widgets: Vec::new() }
}
pub fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);
}
fn inner_width(&self) -> usize {
std::cmp::max(
self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),
)
}
}
impl Widget for Window {
fn width(&self) -> usize {
// ANCHOR_END: Window-width
// Add 4 paddings for borders
self.inner_width() + 4
}
// ANCHOR: Window-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
// ANCHOR_END: Window-draw_into
let mut inner = String::new();
for widget in &self.widgets {
widget.draw_into(&mut inner);
}
let inner_width = self.inner_width();
// TODO: after learning about error handling, you can change
// draw_into to return Result<(), std::fmt::Error>. Then use
// the ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {
writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
}
}
// ---- src/main.rs ----
mod widgets;
use widgets::Widget;
fn main() {
let mut window = widgets::Window::new("Rust GUI Demo 1.23");
window
.add_widget(Box::new(widgets::Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(widgets::Button::new("Click me!")));
window.draw();
}
Testing
Phần này sẽ kéo dài khoảng 45 phút, bao gồm:
Slide | Thời lượng |
---|---|
Test Modules | 5 minutes |
Other Types of Tests | 5 minutes |
Compiler Lints and Clippy | 3 minutes |
Exercise: Luhn Algorithm | 30 minutes |
Unit Tests
Rust and Cargo come with a simple unit test framework:
-
Unit tests are supported throughout your code.
-
Integration tests are supported via the
tests/
directory.
Tests are marked with #[test]
. Unit tests are often put in a nested tests
module, using #[cfg(test)]
to conditionally compile them only when building tests.
- This lets you unit test private helpers.
- The
#[cfg(test)]
attribute is only active when you runcargo test
.
Speaker Notes
This slide should take about 5 minutes.
Run the tests in the playground in order to show their results.
Other Types of Tests
Integration Tests
If you want to test your library as a client, use an integration test.
Create a .rs
file under tests/
:
// tests/my_library.rs
use my_library::init;
#[test]
fn test_init() {
assert!(init().is_ok());
}
These tests only have access to the public API of your crate.
Documentation Tests
Rust has built-in support for documentation tests:
- Code blocks in
///
comments are automatically seen as Rust code. - The code will be compiled and executed as part of
cargo test
. - Adding
#
in the code will hide it from the docs, but will still compile/run it. - Test the above code on the Rust Playground.
Compiler Lints and Clippy
The Rust compiler produces fantastic error messages, as well as helpful built-in lints. Clippy provides even more lints, organized into groups that can be enabled per-project.
Speaker Notes
This slide should take about 3 minutes.
Run the code sample and examine the error message. There are also lints visible here, but those will not be shown once the code compiles. Switch to the Playground site to show those lints.
After resolving the lints, run clippy
on the playground site to show clippy warnings. Clippy has extensive documentation of its lints, and adds new lints (including default-deny lints) all the time.
Note that errors or warnings with help: ...
can be fixed with cargo fix
or via your editor.
Exercise: Luhn Algorithm
Luhn Algorithm
The Luhn algorithm is used to validate credit card numbers. The algorithm takes a string as input and does the following to validate the credit card number:
-
Ignore all spaces. Reject number with fewer than two digits.
-
Moving from right to left, double every second digit: for the number
1234
, we double3
and1
. For the number98765
, we double6
and8
. -
After doubling a digit, sum the digits if the result is greater than 9. So doubling
7
becomes14
which becomes1 + 4 = 5
. -
Sum all the undoubled and doubled digits.
-
The credit card number is valid if the sum ends with
0
.
The provided code provides a buggy implementation of the luhn algorithm, along with two basic unit tests that confirm that most the algorithm is implemented correctly.
Copy the code below to https://play.rust-lang.org/ and write additional tests to uncover bugs in the provided implementation, fixing any bugs you find.
Đáp Án
Welcome Back
Buổi học nên kéo dài khoảng 2 tiếng và 10 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Error Handling | 55 minutes |
Unsafe Rust | 1 hour and 5 minutes |
Error Handling
Phần này sẽ kéo dài khoảng 55 phút, bao gồm:
Slide | Thời lượng |
---|---|
Panics | 3 minutes |
Try Operator | 5 minutes |
Try Conversions | 5 minutes |
Error Trait | 5 minutes |
thiserror and anyhow | 5 minutes |
Exercise: Rewriting with Result | 30 minutes |
Panics
Rust handles fatal errors with a “panic”.
Rust will trigger a panic if a fatal error happens at runtime:
- Panics are for unrecoverable and unexpected errors.
- Panics are symptoms of bugs in the program.
- Runtime failures like failed bounds checks can panic
- Assertions (such as
assert!
) panic on failure - Purpose-specific panics can use the
panic!
macro.
- A panic will “unwind” the stack, dropping values just as if the functions had returned.
- Use non-panicking APIs (such as
Vec::get
) if crashing is not acceptable.
Speaker Notes
This slide should take about 3 minutes.
By default, a panic will cause the stack to unwind. The unwinding can be caught:
- Catching is unusual; do not attempt to implement exceptions with
catch_unwind
! - This can be useful in servers which should keep running even if a single request crashes.
- This does not work if
panic = 'abort'
is set in yourCargo.toml
.
Try Operator
Runtime errors like connection-refused or file-not-found are handled with the Result
type, but matching this type on every call can be cumbersome. The try-operator ?
is used to return errors to the caller. It lets you turn the common
match some_expression {
Ok(value) => value,
Err(err) => return Err(err),
}
into the much simpler
some_expression?
We can use this to simplify our error handling code:
Speaker Notes
This slide should take about 5 minutes.
Simplify the read_username
function to use ?
.
Các điểm chính:
- The
username
variable can be eitherOk(string)
orErr(error)
. - Use the
fs::write
call to test out the different scenarios: no file, empty file, file with username. - Note that
main
can return aResult<(), E>
as long as it implementsstd::process::Termination
. In practice, this means thatE
implementsDebug
. The executable will print theErr
variant and return a nonzero exit status on error.
Try Conversions
The effective expansion of ?
is a little more complicated than previously indicated:
expression?
works the same as
match expression {
Ok(value) => value,
Err(err) => return Err(From::from(err)),
}
The From::from
call here means we attempt to convert the error type to the type returned by the function. This makes it easy to encapsulate errors into higher-level errors.
Example
Speaker Notes
This slide should take about 5 minutes.
The ?
operator must return a value compatible with the return type of the function. For Result
, it means that the error types have to be compatible. A function that returns Result<T, ErrorOuter>
can only use ?
on a value of type Result<U, ErrorInner>
if ErrorOuter
and ErrorInner
are the same type or if ErrorOuter
implements From<ErrorInner>
.
A common alternative to a From
implementation is Result::map_err
, especially when the conversion only happens in one place.
There is no compatibility requirement for Option
. A function returning Option<T>
can use the ?
operator on Option<U>
for arbitrary T
and U
types.
A function that returns Result
cannot use ?
on Option
and vice versa. However, Option::ok_or
converts Option
to Result
whereas Result::ok
turns Result
into Option
.
Dynamic Error Types
Sometimes we want to allow any type of error to be returned without writing our own enum covering all the different possibilities. The std::error::Error
trait makes it easy to create a trait object that can contain any error.
Speaker Notes
This slide should take about 5 minutes.
The read_count
function can return std::io::Error
(from file operations) or std::num::ParseIntError
(from String::parse
).
Boxing errors saves on code, but gives up the ability to cleanly handle different error cases differently in the program. As such it’s generally not a good idea to use Box<dyn Error>
in the public API of a library, but it can be a good option in a program where you just want to display the error message somewhere.
Make sure to implement the std::error::Error
trait when defining a custom error type so it can be boxed. But if you need to support the no_std
attribute, keep in mind that the std::error::Error
trait is currently compatible with no_std
in nightly only.
thiserror
and anyhow
The thiserror
and anyhow
crates are widely used to simplify error handling.
thiserror
is often used in libraries to create custom error types that implementFrom<T>
.anyhow
is often used by applications to help with error handling in functions, including adding contextual information to your errors.
Speaker Notes
This slide should take about 5 minutes.
thiserror
- The
Error
derive macro is provided bythiserror
, and has lots of useful attributes to help define error types in a compact way. - The
std::error::Error
trait is derived automatically. - The message from
#[error]
is used to derive theDisplay
trait.
anyhow
anyhow::Error
is essentially a wrapper aroundBox<dyn Error>
. As such it’s again generally not a good choice for the public API of a library, but is widely used in applications.anyhow::Result<V>
is a type alias forResult<V, anyhow::Error>
.- Actual error type inside of it can be extracted for examination if necessary.
- Functionality provided by
anyhow::Result<T>
may be familiar to Go developers, as it provides similar usage patterns and ergonomics to(T, error)
from Go. anyhow::Context
is a trait implemented for the standardResult
andOption
types.use anyhow::Context
is necessary to enable.context()
and.with_context()
on those types.
Exercise: Rewriting with Result
The following implements a very simple parser for an expression language. However, it handles errors by panicking. Rewrite it to instead use idiomatic error handling and propagate errors to a return from main
. Feel free to use thiserror
and anyhow
.
HINT: start by fixing error handling in the parse
function. Once that is working correctly, update Tokenizer
to implement Iterator<Item=Result<Token, TokenizerError>>
and handle that in the parser.
Đáp Án
Unsafe Rust
Phần này sẽ kéo dài khoảng 1 giờ và 5 phút, bao gồm:
Slide | Thời lượng |
---|---|
Unsafe | 5 minutes |
Dereferencing Raw Pointers | 10 minutes |
Mutable Static Variables | 5 minutes |
Unions | 5 minutes |
Unsafe Functions | 5 minutes |
Unsafe Traits | 5 minutes |
Exercise: FFI Wrapper | 30 minutes |
Unsafe Rust
The Rust language has two parts:
- Safe Rust: memory safe, no undefined behavior possible.
- Unsafe Rust: can trigger undefined behavior if preconditions are violated.
We saw mostly safe Rust in this course, but it’s important to know what Unsafe Rust is.
Unsafe code is usually small and isolated, and its correctness should be carefully documented. It is usually wrapped in a safe abstraction layer.
Unsafe Rust gives you access to five new capabilities:
- Dereference raw pointers.
- Access or modify mutable static variables.
- Access
union
fields. - Call
unsafe
functions, includingextern
functions. - Implement
unsafe
traits.
We will briefly cover unsafe capabilities next. For full details, please see Chapter 19.1 in the Rust Book and the Rustonomicon.
Speaker Notes
This slide should take about 5 minutes.
Unsafe Rust does not mean the code is incorrect. It means that developers have turned off some compiler safety features and have to write correct code by themselves. It means the compiler no longer enforces Rust’s memory-safety rules.
Dereferencing Raw Pointers
Creating pointers is safe, but dereferencing them requires unsafe
:
Speaker Notes
This slide should take about 10 minutes.
It is good practice (and required by the Android Rust style guide) to write a comment for each unsafe
block explaining how the code inside it satisfies the safety requirements of the unsafe operations it is doing.
In the case of pointer dereferences, this means that the pointers must be valid, i.e.:
- The pointer must be non-null.
- The pointer must be dereferenceable (within the bounds of a single allocated object).
- The object must not have been deallocated.
- There must not be concurrent accesses to the same location.
- If the pointer was obtained by casting a reference, the underlying object must be live and no reference may be used to access the memory.
In most cases the pointer must also be properly aligned.
The “NOT SAFE” section gives an example of a common kind of UB bug: *r1
has the 'static
lifetime, so r3
has type &'static String
, and thus outlives s
. Creating a reference from a pointer requires great care.
Mutable Static Variables
It is safe to read an immutable static variable:
However, since data races can occur, it is unsafe to read and write mutable static variables:
Speaker Notes
This slide should take about 5 minutes.
-
The program here is safe because it is single-threaded. However, the Rust compiler is conservative and will assume the worst. Try removing the
unsafe
and see how the compiler explains that it is undefined behavior to mutate a static from multiple threads. -
Using a mutable static is generally a bad idea, but there are some cases where it might make sense in low-level
no_std
code, such as implementing a heap allocator or working with some C APIs.
Unions
Unions are like enums, but you need to track the active field yourself:
Speaker Notes
This slide should take about 5 minutes.
Unions are very rarely needed in Rust as you can usually use an enum. They are occasionally needed for interacting with C library APIs.
If you just want to reinterpret bytes as a different type, you probably want std::mem::transmute
or a safe wrapper such as the zerocopy
crate.
Unsafe Functions
Calling Unsafe Functions
A function or method can be marked unsafe
if it has extra preconditions you must uphold to avoid undefined behaviour:
Writing Unsafe Functions
You can mark your own functions as unsafe
if they require particular conditions to avoid undefined behaviour.
Speaker Notes
This slide should take about 5 minutes.
Calling Unsafe Functions
get_unchecked
, like most _unchecked
functions, is unsafe, because it can create UB if the range is incorrect. abs
is incorrect for a different reason: it is an external function (FFI). Calling external functions is usually only a problem when those functions do things with pointers which might violate Rust’s memory model, but in general any C function might have undefined behaviour under any arbitrary circumstances.
The "C"
in this example is the ABI; other ABIs are available too.
Writing Unsafe Functions
We wouldn’t actually use pointers for a swap
function - it can be done safely with references.
Note that unsafe code is allowed within an unsafe function without an unsafe
block. We can prohibit this with #[deny(unsafe_op_in_unsafe_fn)]
. Try adding it and see what happens. This will likely change in a future Rust edition.
Implementing Unsafe Traits
Like with functions, you can mark a trait as unsafe
if the implementation must guarantee particular conditions to avoid undefined behaviour.
For example, the zerocopy
crate has an unsafe trait that looks something like this:
Speaker Notes
This slide should take about 5 minutes.
There should be a # Safety
section on the Rustdoc for the trait explaining the requirements for the trait to be safely implemented.
The actual safety section for AsBytes
is rather longer and more complicated.
The built-in Send
and Sync
traits are unsafe.
Safe FFI Wrapper
Rust has great support for calling functions through a foreign function interface (FFI). We will use this to build a safe wrapper for the libc
functions you would use from C to read the names of files in a directory.
You will want to consult the manual pages:
You will also want to browse the std::ffi
module. There you find a number of string types which you need for the exercise:
Kiểu Dữ Liệu | Encoding | Use |
---|---|---|
str and String | UTF-8 | Text processing in Rust |
CStr and CString | NUL-terminated | Communicating with C functions |
OsStr and OsString | OS-specific | Communicating with the OS |
You will convert between all these types:
&str
toCString
: you need to allocate space for a trailing\0
character,CString
to*const i8
: you need a pointer to call C functions,*const i8
to&CStr
: you need something which can find the trailing\0
character,&CStr
to&[u8]
: a slice of bytes is the universal interface for “some unknown data”,&[u8]
to&OsStr
:&OsStr
is a step towardsOsString
, useOsStrExt
to create it,&OsStr
toOsString
: you need to clone the data in&OsStr
to be able to return it and callreaddir
again.
The Nomicon also has a very useful chapter about FFI.
Copy the code below to https://play.rust-lang.org/ and fill in the missing functions and methods:
// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]
mod ffi {
use std::os::raw::{c_char, c_int};
#[cfg(not(target_os = "macos"))]
use std::os::raw::{c_long, c_uchar, c_ulong, c_ushort};
// Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
#[repr(C)]
pub struct DIR {
_data: [u8; 0],
_marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,
}
// Layout according to the Linux man page for readdir(3), where ino_t and
// off_t are resolved according to the definitions in
// /usr/include/x86_64-linux-gnu/{sys/types.h, bits/typesizes.h}.
#[cfg(not(target_os = "macos"))]
#[repr(C)]
pub struct dirent {
pub d_ino: c_ulong,
pub d_off: c_long,
pub d_reclen: c_ushort,
pub d_type: c_uchar,
pub d_name: [c_char; 256],
}
// Layout according to the macOS man page for dir(5).
#[cfg(all(target_os = "macos"))]
#[repr(C)]
pub struct dirent {
pub d_fileno: u64,
pub d_seekoff: u64,
pub d_reclen: u16,
pub d_namlen: u16,
pub d_type: u8,
pub d_name: [c_char; 1024],
}
extern "C" {
pub fn opendir(s: *const c_char) -> *mut DIR;
#[cfg(not(all(target_os = "macos", target_arch = "x86_64")))]
pub fn readdir(s: *mut DIR) -> *const dirent;
// See https://github.com/rust-lang/libc/issues/414 and the section on
// _DARWIN_FEATURE_64_BIT_INODE in the macOS man page for stat(2).
//
// "Platforms that existed before these updates were available" refers
// to macOS (as opposed to iOS / wearOS / etc.) on Intel and PowerPC.
#[cfg(all(target_os = "macos", target_arch = "x86_64"))]
#[link_name = "readdir$INODE64"]
pub fn readdir(s: *mut DIR) -> *const dirent;
pub fn closedir(s: *mut DIR) -> c_int;
}
}
use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;
#[derive(Debug)]
struct DirectoryIterator {
path: CString,
dir: *mut ffi::DIR,
}
impl DirectoryIterator {
fn new(path: &str) -> Result<DirectoryIterator, String> {
// Call opendir and return a Ok value if that worked,
// otherwise return Err with a message.
unimplemented!()
}
}
impl Iterator for DirectoryIterator {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {
// Keep calling readdir until we get a NULL pointer back.
unimplemented!()
}
}
impl Drop for DirectoryIterator {
fn drop(&mut self) {
// Call closedir as needed.
unimplemented!()
}
}
fn main() -> Result<(), String> {
let iter = DirectoryIterator::new(".")?;
println!("files: {:#?}", iter.collect::<Vec<_>>());
Ok(())
}
Đáp Án
Welcome to Rust in Android
Rust is supported for system software on Android. This means that you can write new services, libraries, drivers or even firmware in Rust (or improve existing code as needed).
We will attempt to call Rust from one of your own projects today. So try to find a little corner of your code base where we can move some lines of code to Rust. The fewer dependencies and “exotic” types the better. Something that parses some raw bytes would be ideal.
Speaker Notes
The speaker may mention any of the following given the increased use of Rust in Android:
-
Service example: DNS over HTTP
-
Libraries: Rutabaga Virtual Graphics Interface
-
Kernel Drivers: Binder
-
Firmware: pKVM firmware
Setup
We will be using a Cuttlefish Android Virtual Device to test our code. Make sure you have access to one or create a new one with:
source build/envsetup.sh
lunch aosp_cf_x86_64_phone-trunk_staging-userdebug
acloud create
Please see the Android Developer Codelab for details.
Speaker Notes
Các điểm chính:
-
Cuttlefish is a reference Android device designed to work on generic Linux desktops. MacOS support is also planned.
-
The Cuttlefish system image maintains high fidelity to real devices, and is the ideal emulator to run many Rust use cases.
Build Rules
The Android build system (Soong) supports Rust via a number of modules:
Module Type | Description |
---|---|
rust_binary | Produces a Rust binary. |
rust_library | Produces a Rust library, and provides both rlib and dylib variants. |
rust_ffi | Produces a Rust C library usable by cc modules, and provides both static and shared variants. |
rust_proc_macro | Produces a proc-macro Rust library. These are analogous to compiler plugins. |
rust_test | Produces a Rust test binary that uses the standard Rust test harness. |
rust_fuzz | Produces a Rust fuzz binary leveraging libfuzzer . |
rust_protobuf | Generates source and produces a Rust library that provides an interface for a particular protobuf. |
rust_bindgen | Generates source and produces a Rust library containing Rust bindings to C libraries. |
We will look at rust_binary
and rust_library
next.
Speaker Notes
Additional items speaker may mention:
-
Cargo is not optimized for multi-language repos, and also downloads packages from the internet.
-
For compliance and performance, Android must have crates in-tree. It must also interop with C/C++/Java code. Soong fills that gap.
-
Soong has many similarities to Bazel, which is the open-source variant of Blaze (used in google3).
-
There is a plan to transition Android, ChromeOS, and Fuchsia to Bazel.
-
Learning Bazel-like build rules is useful for all Rust OS developers.
-
Fun fact: Data from Star Trek is a Soong-type Android.
Rust Binaries
Let us start with a simple application. At the root of an AOSP checkout, create the following files:
hello_rust/Android.bp:
rust_binary {
name: "hello_rust",
crate_name: "hello_rust",
srcs: ["src/main.rs"],
}
hello_rust/src/main.rs:
//! Rust demo.
/// Prints a greeting to standard output.
fn main() {
println!("Hello from Rust!");
}
You can now build, push, and run the binary:
m hello_rust
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust" /data/local/tmp
adb shell /data/local/tmp/hello_rust
Hello from Rust!
Rust Libraries
You use rust_library
to create a new Rust library for Android.
Here we declare a dependency on two libraries:
libgreeting
, which we define below,libtextwrap
, which is a crate already vendored inexternal/rust/crates/
.
hello_rust/Android.bp:
rust_binary {
name: "hello_rust_with_dep",
crate_name: "hello_rust_with_dep",
srcs: ["src/main.rs"],
rustlibs: [
"libgreetings",
"libtextwrap",
],
prefer_rlib: true, // Need this to avoid dynamic link error.
}
rust_library {
name: "libgreetings",
crate_name: "greetings",
srcs: ["src/lib.rs"],
}
hello_rust/src/main.rs:
//! Rust demo.
use greetings::greeting;
use textwrap::fill;
/// Prints a greeting to standard output.
fn main() {
println!("{}", fill(&greeting("Bob"), 24));
}
hello_rust/src/lib.rs:
//! Greeting library.
/// Greet `name`.
pub fn greeting(name: &str) -> String {
format!("Hello {name}, it is very nice to meet you!")
}
You build, push, and run the binary like before:
m hello_rust_with_dep
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep" /data/local/tmp
adb shell /data/local/tmp/hello_rust_with_dep
Hello Bob, it is very
nice to meet you!
AIDL
The Android Interface Definition Language (AIDL) is supported in Rust:
- Rust code can call existing AIDL servers,
- You can create new AIDL servers in Rust.
Birthday Service Tutorial
To illustrate how to use Rust with Binder, we’re going to walk through the process of creating a Binder interface. We’re then going to both implement the described service and write client code that talks to that service.
AIDL Interfaces
You declare the API of your service using an AIDL interface:
birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:
/** Birthday service interface. */
interface IBirthdayService {
/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years);
}
birthday_service/aidl/Android.bp:
aidl_interface {
name: "com.example.birthdayservice",
srcs: ["com/example/birthdayservice/*.aidl"],
unstable: true,
backend: {
rust: { // Rust is not enabled by default
enabled: true,
},
},
}
Speaker Notes
- Note that the directory structure under the
aidl/
directory needs to match the package name used in the AIDL file, i.e. the package iscom.example.birthdayservice
and the file is ataidl/com/example/IBirthdayService.aidl
.
Generated Service API
Binder generates a trait corresponding to the interface definition. trait to talk to the service.
birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:
/** Birthday service interface. */
interface IBirthdayService {
/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years);
}
Generated trait:
trait IBirthdayService {
fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String>;
}
Your service will need to implement this trait, and your client will use this trait to talk to the service.
Speaker Notes
- The generated bindings can be found at
out/soong/.intermediates/<path to module>/
. - Point out how the generated function signature, specifically the argument and return types, correspond the interface definition.
String
for an argument results in a different Rust type thanString
as a return type.
Service Implementation
We can now implement the AIDL service:
birthday_service/src/lib.rs:
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;
/// The `IBirthdayService` implementation.
pub struct BirthdayService;
impl binder::Interface for BirthdayService {}
impl IBirthdayService for BirthdayService {
fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String> {
Ok(format!("Happy Birthday {name}, congratulations with the {years} years!"))
}
}
birthday_service/Android.bp:
rust_library {
name: "libbirthdayservice",
srcs: ["src/lib.rs"],
crate_name: "birthdayservice",
rustlibs: [
"com.example.birthdayservice-rust",
"libbinder_rs",
],
}
Speaker Notes
- Point out the path to the generated
IBirthdayService
trait, and explain why each of the segments is necessary. - TODO: What does the
binder::Interface
trait do? Are there methods to override? Where source?
AIDL Server
Finally, we can create a server which exposes the service:
birthday_service/src/server.rs:
//! Birthday service.
use birthdayservice::BirthdayService;
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::BnBirthdayService;
use com_example_birthdayservice::binder;
const SERVICE_IDENTIFIER: &str = "birthdayservice";
/// Entry point for birthday service.
fn main() {
let birthday_service = BirthdayService;
let birthday_service_binder = BnBirthdayService::new_binder(
birthday_service,
binder::BinderFeatures::default(),
);
binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder.as_binder())
.expect("Failed to register service");
binder::ProcessState::join_thread_pool()
}
birthday_service/Android.bp:
rust_binary {
name: "birthday_server",
crate_name: "birthday_server",
srcs: ["src/server.rs"],
rustlibs: [
"com.example.birthdayservice-rust",
"libbinder_rs",
"libbirthdayservice",
],
prefer_rlib: true, // To avoid dynamic link error.
}
Speaker Notes
The process for taking a user-defined service implementation (in this case the BirthdayService
type, which implements the IBirthdayService
) and starting it as a Binder service has multiple steps, and may appear more complicated than students are used to if they’ve used Binder from C++ or another language. Explain to students why each step is necessary.
- Create an instance of your service type (
BirthdayService
). - Wrap the service object in corresponding
Bn*
type (BnBirthdayService
in this case). This type is generated by Binder and provides the common Binder functionality that would be provided by theBnBinder
base class in C++. We don’t have inheritance in Rust, so instead we use composition, putting ourBirthdayService
within the generatedBnBinderService
. - Call
add_service
, giving it a service identifier and your service object (theBnBirthdayService
object in the example). - Call
join_thread_pool
to add the current thread to Binder’s thread pool and start listening for connections.
Deploy
We can now build, push, and start the service:
m birthday_server
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_server" /data/local/tmp
adb root
adb shell /data/local/tmp/birthday_server
In another terminal, check that the service runs:
adb shell service check birthdayservice
Service birthdayservice: found
You can also call the service with service call
:
adb shell service call birthdayservice 1 s16 Bob i32 24
Result: Parcel(
0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'
0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'
0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'
0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'
0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'
0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'
0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'
0x00000070: 00210073 00000000 's.!..... ')
AIDL Client
Finally, we can create a Rust client for our new service.
birthday_service/src/client.rs:
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;
const SERVICE_IDENTIFIER: &str = "birthdayservice";
/// Call the birthday service.
fn main() -> Result<(), Box<dyn Error>> {
let name = std::env::args().nth(1).unwrap_or_else(|| String::from("Bob"));
let years = std::env::args()
.nth(2)
.and_then(|arg| arg.parse::<i32>().ok())
.unwrap_or(42);
binder::ProcessState::start_thread_pool();
let service = binder::get_interface::<dyn IBirthdayService>(SERVICE_IDENTIFIER)
.map_err(|_| "Failed to connect to BirthdayService")?;
// Call the service.
let msg = service.wishHappyBirthday(&name, years)?;
println!("{msg}");
}
birthday_service/Android.bp:
rust_binary {
name: "birthday_client",
crate_name: "birthday_client",
srcs: ["src/client.rs"],
rustlibs: [
"com.example.birthdayservice-rust",
"libbinder_rs",
],
prefer_rlib: true, // To avoid dynamic link error.
}
Notice that the client does not depend on libbirthdayservice
.
Build, push, and run the client on your device:
m birthday_client
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_client" /data/local/tmp
adb shell /data/local/tmp/birthday_client Charlie 60
Happy Birthday Charlie, congratulations with the 60 years!
Speaker Notes
Strong<dyn IBirthdayService>
is the trait object representing the service that the client has connected to.Strong
is a custom smart pointer type for Binder. It handles both an in-process ref count for the service trait object, and the global Binder ref count that tracks how many processes have a reference to the object.- Note that the trait object that the client uses to talk to the service uses the exact same trait that the server implements. For a given Binder interface, there is a single Rust trait generated that both client and server use.
- Use the same service identifier used when registering the service. This should ideally be defined in a common crate that both the client and server can depend on.
Changing API
Let us extend the API with more functionality: we want to let clients specify a list of lines for the birthday card:
package com.example.birthdayservice;
/** Birthday service interface. */
interface IBirthdayService {
/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years, in String[] text);
}
This results in an updated trait definition for IBirthdayService
:
trait IBirthdayService {
fn wishHappyBirthday(
&self,
name: &str,
years: i32,
text: &[String],
) -> binder::Result<String>;
}
Speaker Notes
- Note how the
String[]
in the AIDL definition is translated as a&[String]
in Rust, i.e. that idiomatic Rust types are used in the generated bindings wherever possible:in
array arguments are translated to slices.out
andinout
args are translated to&mut Vec<T>
.- Return values are translated to returning a
Vec<T>
.
Updating Client and Service
Update the client and server code to account for the new API.
birthday_service/src/lib.rs:
impl IBirthdayService for BirthdayService {
fn wishHappyBirthday(
&self,
name: &str,
years: i32,
text: &[String],
) -> binder::Result<String> {
let mut msg = format!(
"Happy Birthday {name}, congratulations with the {years} years!",
);
for line in text {
msg.push('\n');
msg.push_str(line);
}
Ok(msg)
}
}
birthday_service/src/client.rs:
let msg = service.wishHappyBirthday(
&name,
years,
&[
String::from("Habby birfday to yuuuuu"),
String::from("And also: many more"),
],
)?;
Speaker Notes
- TODO: Move code snippets into project files where they’ll actually be built?
Working With AIDL Types
AIDL types translate into the appropriate idiomatic Rust type:
- Primitive types map (mostly) to idiomatic Rust types.
- Collection types like slices,
Vec
s and string types are supported. - References to AIDL objects and file handles can be sent between clients and services.
- File handles and parcelables are fully supported.
Primitive Types
Primitive types map (mostly) idiomatically:
AIDL Type | Rust Type | Note |
---|---|---|
boolean | bool | |
byte | i8 | Note that bytes are signed. |
char | u16 | Note the usage of u16 , NOT u32 . |
int | i32 | |
long | i64 | |
float | f32 | |
double | f64 | |
String | String |
Array Types
The array types (T[]
, byte[]
, and List<T>
) get translated to the appropriate Rust array type depending on how they are used in the function signature:
Position | Rust Type |
---|---|
in argument | &[T] |
out /inout argument | &mut Vec<T> |
Return | Vec<T> |
Speaker Notes
- In Android 13 or higher, fixed-size arrays are supported, i.e.
T[N]
becomes[T; N]
. Fixed-size arrays can have multiple dimensions (e.g. int[3][4]). In the Java backend, fixed-size arrays are represented as array types. - Arrays in parcelable fields always get translated to
Vec<T>
.
Sending Objects
AIDL objects can be sent either as a concrete AIDL type or as the type-erased IBinder
interface:
birthday_service/aidl/com/example/birthdayservice/IBirthdayInfoProvider.aidl:
package com.example.birthdayservice;
interface IBirthdayInfoProvider {
String name();
int years();
}
birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:
import com.example.birthdayservice.IBirthdayInfoProvider;
interface IBirthdayService {
/** The same thing, but using a binder object. */
String wishWithProvider(IBirthdayInfoProvider provider);
/** The same thing, but using `IBinder`. */
String wishWithErasedProvider(IBinder provider);
}
birthday_service/src/client.rs:
/// Rust struct implementing the `IBirthdayInfoProvider` interface.
struct InfoProvider {
name: String,
age: u8,
}
impl binder::Interface for InfoProvider {}
impl IBirthdayInfoProvider for InfoProvider {
fn name(&self) -> binder::Result<String> {
Ok(self.name.clone())
}
fn years(&self) -> binder::Result<i32> {
Ok(self.age as i32)
}
}
fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");
// Create a binder object for the `IBirthdayInfoProvider` interface.
let provider = BnBirthdayInfoProvider::new_binder(
InfoProvider { name: name.clone(), age: years as u8 },
BinderFeatures::default(),
);
// Send the binder object to the service.
service.wishWithProvider(&provider)?;
// Perform the same operation but passing the provider as an `SpIBinder`.
service.wishWithErasedProvider(&provider.as_binder())?;
}
Speaker Notes
- Note the usage of
BnBirthdayInfoProvider
. This serves the same purpose asBnBirthdayService
that we saw previously.
Parcelables
Binder for Rust supports sending parcelables directly:
birthday_service/aidl/com/example/birthdayservice/BirthdayInfo.aidl:
package com.example.birthdayservice;
parcelable BirthdayInfo {
String name;
int years;
}
birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:
import com.example.birthdayservice.BirthdayInfo;
interface IBirthdayService {
/** The same thing, but with a parcelable. */
String wishWithInfo(in BirthdayInfo info);
}
birthday_service/src/client.rs:
fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");
service.wishWithInfo(&BirthdayInfo { name: name.clone(), years })?;
}
Sending Files
Files can be sent between Binder clients/servers using the ParcelFileDescriptor
type:
birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:
interface IBirthdayService {
/** The same thing, but loads info from a file. */
String wishFromFile(in ParcelFileDescriptor infoFile);
}
birthday_service/src/client.rs:
fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");
// Open a file and put the birthday info in it.
let mut file = File::create("/data/local/tmp/birthday.info").unwrap();
writeln!(file, "{name}")?;
writeln!(file, "{years}")?;
// Create a `ParcelFileDescriptor` from the file and send it.
let file = ParcelFileDescriptor::new(file);
service.wishFromFile(&file)?;
}
birthday_service/src/lib.rs:
impl IBirthdayService for BirthdayService {
fn wishFromFile(
&self,
info_file: &ParcelFileDescriptor,
) -> binder::Result<String> {
// Convert the file descriptor to a `File`. `ParcelFileDescriptor` wraps
// an `OwnedFd`, which can be cloned and then used to create a `File`
// object.
let mut info_file = info_file
.as_ref()
.try_clone()
.map(File::from)
.expect("Invalid file handle");
let mut contents = String::new();
info_file.read_to_string(&mut contents).unwrap();
let mut lines = contents.lines();
let name = lines.next().unwrap();
let years: i32 = lines.next().unwrap().parse().unwrap();
Ok(format!("Happy Birthday {name}, congratulations with the {years} years!"))
}
}
Speaker Notes
ParcelFileDescriptor
wraps anOwnedFd
, and so can be created from aFile
(or any other type that wraps anOwnedFd
), and can be used to create a newFile
handle on the other side.- Other types of file descriptors can be wrapped and sent, e.g. TCP, UDP, and UNIX sockets.
Testing in Android
Building on Testing, we will now look at how unit tests work in AOSP. Use the rust_test
module for your unit tests:
testing/Android.bp:
rust_library {
name: "libleftpad",
crate_name: "leftpad",
srcs: ["src/lib.rs"],
}
rust_test {
name: "libleftpad_test",
crate_name: "leftpad_test",
srcs: ["src/lib.rs"],
host_supported: true,
test_suites: ["general-tests"],
}
testing/src/lib.rs:
You can now run the test with
atest --host libleftpad_test
The output looks like this:
INFO: Elapsed time: 2.666s, Critical Path: 2.40s
INFO: 3 processes: 2 internal, 1 linux-sandbox.
INFO: Build completed successfully, 3 total actions
//comprehensive-rust-android/testing:libleftpad_test_host PASSED in 2.3s
PASSED libleftpad_test.tests::long_string (0.0s)
PASSED libleftpad_test.tests::short_string (0.0s)
Test cases: finished with 2 passing and 0 failing out of 2 test cases
Notice how you only mention the root of the library crate. Tests are found recursively in nested modules.
GoogleTest
The GoogleTest crate allows for flexible test assertions using matchers:
use googletest::prelude::*;
#[googletest::test]
fn test_elements_are() {
let value = vec!["foo", "bar", "baz"];
expect_that!(value, elements_are!(eq("foo"), lt("xyz"), starts_with("b")));
}
If we change the last element to "!"
, the test fails with a structured error message pin-pointing the error:
---- test_elements_are stdout ----
Value of: value
Expected: has elements:
0. is equal to "foo"
1. is less than "xyz"
2. starts with prefix "!"
Actual: ["foo", "bar", "baz"],
where element #2 is "baz", which does not start with "!"
at src/testing/googletest.rs:6:5
Error: See failure output above
Speaker Notes
This slide should take about 5 minutes.
-
GoogleTest is not part of the Rust Playground, so you need to run this example in a local environment. Use
cargo add googletest
to quickly add it to an existing Cargo project. -
The
use googletest::prelude::*;
line imports a number of commonly used macros and types. -
This just scratches the surface, there are many builtin matchers. Consider going through the first chapter of “Advanced testing for Rust applications”, a self-guided Rust course: it provides a guided introduction to the library, with exercises to help you get comfortable with
googletest
macros, its matchers and its overall philosophy. -
A particularly nice feature is that mismatches in multi-line strings are shown as a diff:
#[test]
fn test_multiline_string_diff() {
let haiku = "Memory safety found,\n\
Rust's strong typing guides the way,\n\
Secure code you'll write.";
assert_that!(
haiku,
eq("Memory safety found,\n\
Rust's silly humor guides the way,\n\
Secure code you'll write.")
);
}
shows a color-coded diff (colors not shown here):
Value of: haiku
Expected: is equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."
Actual: "Memory safety found,\nRust's strong typing guides the way,\nSecure code you'll write.",
which isn't equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."
Difference(-actual / +expected):
Memory safety found,
-Rust's strong typing guides the way,
+Rust's silly humor guides the way,
Secure code you'll write.
at src/testing/googletest.rs:17:5
- The crate is a Rust port of GoogleTest for C++.
Mocking
For mocking, Mockall is a widely used library. You need to refactor your code to use traits, which you can then quickly mock:
use std::time::Duration;
#[mockall::automock]
pub trait Pet {
fn is_hungry(&self, since_last_meal: Duration) -> bool;
}
#[test]
fn test_robot_dog() {
let mut mock_dog = MockPet::new();
mock_dog.expect_is_hungry().return_const(true);
assert_eq!(mock_dog.is_hungry(Duration::from_secs(10)), true);
}
Speaker Notes
This slide should take about 5 minutes.
-
Mockall is the recommended mocking library in Android (AOSP). There are other mocking libraries available on crates.io, in particular in the area of mocking HTTP services. The other mocking libraries work in a similar fashion as Mockall, meaning that they make it easy to get a mock implementation of a given trait.
-
Note that mocking is somewhat controversial: mocks allow you to completely isolate a test from its dependencies. The immediate result is faster and more stable test execution. On the other hand, the mocks can be configured wrongly and return output different from what the real dependencies would do.
If at all possible, it is recommended that you use the real dependencies. As an example, many databases allow you to configure an in-memory backend. This means that you get the correct behavior in your tests, plus they are fast and will automatically clean up after themselves.
Similarly, many web frameworks allow you to start an in-process server which binds to a random port on
localhost
. Always prefer this over mocking away the framework since it helps you test your code in the real environment. -
Mockall is not part of the Rust Playground, so you need to run this example in a local environment. Use
cargo add mockall
to quickly add Mockall to an existing Cargo project. -
Mockall has a lot more functionality. In particular, you can set up expectations which depend on the arguments passed. Here we use this to mock a cat which becomes hungry 3 hours after the last time it was fed:
#[test]
fn test_robot_cat() {
let mut mock_cat = MockPet::new();
mock_cat
.expect_is_hungry()
.with(mockall::predicate::gt(Duration::from_secs(3 * 3600)))
.return_const(true);
mock_cat.expect_is_hungry().return_const(false);
assert_eq!(mock_cat.is_hungry(Duration::from_secs(1 * 3600)), false);
assert_eq!(mock_cat.is_hungry(Duration::from_secs(5 * 3600)), true);
}
- You can use
.times(n)
to limit the number of times a mock method can be called ton
— the mock will automatically panic when dropped if this isn’t satisfied.
Logging
You should use the log
crate to automatically log to logcat
(on-device) or stdout
(on-host):
hello_rust_logs/Android.bp:
rust_binary {
name: "hello_rust_logs",
crate_name: "hello_rust_logs",
srcs: ["src/main.rs"],
rustlibs: [
"liblog_rust",
"liblogger",
],
host_supported: true,
}
hello_rust_logs/src/main.rs:
//! Rust logging demo.
use log::{debug, error, info};
/// Logs a greeting.
fn main() {
logger::init(
logger::Config::default()
.with_tag_on_device("rust")
.with_min_level(log::Level::Trace),
);
debug!("Starting program.");
info!("Things are going fine.");
error!("Something went wrong!");
}
Build, push, and run the binary on your device:
m hello_rust_logs
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs" /data/local/tmp
adb shell /data/local/tmp/hello_rust_logs
The logs show up in adb logcat
:
adb logcat -s rust
09-08 08:38:32.454 2420 2420 D rust: hello_rust_logs: Starting program.
09-08 08:38:32.454 2420 2420 I rust: hello_rust_logs: Things are going fine.
09-08 08:38:32.454 2420 2420 E rust: hello_rust_logs: Something went wrong!
Interoperability
Rust has excellent support for interoperability with other languages. This means that you can:
- Call Rust functions from other languages.
- Call functions written in other languages from Rust.
When you call functions in a foreign language we say that you’re using a foreign function interface, also known as FFI.
Interoperability with C
Rust has full support for linking object files with a C calling convention. Similarly, you can export Rust functions and call them from C.
You can do it by hand if you want:
extern "C" {
fn abs(x: i32) -> i32;
}
fn main() {
let x = -42;
// SAFETY: `abs` doesn't have any safety requirements.
let abs_x = unsafe { abs(x) };
println!("{x}, {abs_x}");
}
We already saw this in the Safe FFI Wrapper exercise.
This assumes full knowledge of the target platform. Not recommended for production.
We will look at better options next.
Using Bindgen
The bindgen tool can auto-generate bindings from a C header file.
First create a small C library:
interoperability/bindgen/libbirthday.h:
typedef struct card {
const char* name;
int years;
} card;
void print_card(const card* card);
interoperability/bindgen/libbirthday.c:
#include <stdio.h>
#include "libbirthday.h"
void print_card(const card* card) {
printf("+--------------\n");
printf("| Happy Birthday %s!\n", card->name);
printf("| Congratulations with the %i years!\n", card->years);
printf("+--------------\n");
}
Add this to your Android.bp
file:
interoperability/bindgen/Android.bp:
cc_library {
name: "libbirthday",
srcs: ["libbirthday.c"],
}
Create a wrapper header file for the library (not strictly needed in this example):
interoperability/bindgen/libbirthday_wrapper.h:
#include "libbirthday.h"
You can now auto-generate the bindings:
interoperability/bindgen/Android.bp:
rust_bindgen {
name: "libbirthday_bindgen",
crate_name: "birthday_bindgen",
wrapper_src: "libbirthday_wrapper.h",
source_stem: "bindings",
static_libs: ["libbirthday"],
}
Finally, we can use the bindings in our Rust program:
interoperability/bindgen/Android.bp:
rust_binary {
name: "print_birthday_card",
srcs: ["main.rs"],
rustlibs: ["libbirthday_bindgen"],
}
interoperability/bindgen/main.rs:
//! Bindgen demo.
use birthday_bindgen::{card, print_card};
fn main() {
let name = std::ffi::CString::new("Peter").unwrap();
let card = card { name: name.as_ptr(), years: 42 };
// SAFETY: The pointer we pass is valid because it came from a Rust
// reference, and the `name` it contains refers to `name` above which also
// remains valid. `print_card` doesn't store either pointer to use later
// after it returns.
unsafe {
print_card(&card as *const card);
}
}
Build, push, and run the binary on your device:
m print_birthday_card
adb push "$ANDROID_PRODUCT_OUT/system/bin/print_birthday_card" /data/local/tmp
adb shell /data/local/tmp/print_birthday_card
Finally, we can run auto-generated tests to ensure the bindings work:
interoperability/bindgen/Android.bp:
rust_test {
name: "libbirthday_bindgen_test",
srcs: [":libbirthday_bindgen"],
crate_name: "libbirthday_bindgen_test",
test_suites: ["general-tests"],
auto_gen_config: true,
clippy_lints: "none", // Generated file, skip linting
lints: "none",
}
atest libbirthday_bindgen_test
Calling Rust
Exporting Rust functions and types to C is easy:
interoperability/rust/libanalyze/analyze.rs
interoperability/rust/libanalyze/analyze.h
#ifndef ANALYSE_H
#define ANALYSE_H
extern "C" {
void analyze_numbers(int x, int y);
}
#endif
interoperability/rust/libanalyze/Android.bp
rust_ffi {
name: "libanalyze_ffi",
crate_name: "analyze_ffi",
srcs: ["analyze.rs"],
include_dirs: ["."],
}
We can now call this from a C binary:
interoperability/rust/analyze/main.c
#include "analyze.h"
int main() {
analyze_numbers(10, 20);
analyze_numbers(123, 123);
return 0;
}
interoperability/rust/analyze/Android.bp
cc_binary {
name: "analyze_numbers",
srcs: ["main.c"],
static_libs: ["libanalyze_ffi"],
}
Build, push, and run the binary on your device:
m analyze_numbers
adb push "$ANDROID_PRODUCT_OUT/system/bin/analyze_numbers" /data/local/tmp
adb shell /data/local/tmp/analyze_numbers
Speaker Notes
#[no_mangle]
disables Rust’s usual name mangling, so the exported symbol will just be the name of the function. You can also use #[export_name = "some_name"]
to specify whatever name you want.
With C++
The CXX crate makes it possible to do safe interoperability between Rust and C++.
The overall approach looks like this:
The Bridge Module
CXX relies on a description of the function signatures that will be exposed from each language to the other. You provide this description using extern blocks in a Rust module annotated with the #[cxx::bridge]
attribute macro.
#[allow(unsafe_op_in_unsafe_fn)]
#[cxx::bridge(namespace = "org::blobstore")]
mod ffi {
// Shared structs with fields visible to both languages.
struct BlobMetadata {
size: usize,
tags: Vec<String>,
}
// Rust types and signatures exposed to C++.
extern "Rust" {
type MultiBuf;
fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}
// C++ types and signatures exposed to Rust.
unsafe extern "C++" {
include!("include/blobstore.h");
type BlobstoreClient;
fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);
fn metadata(&self, blobid: u64) -> BlobMetadata;
}
}
Speaker Notes
- The bridge is generally declared in an
ffi
module within your crate. - From the declarations made in the bridge module, CXX will generate matching Rust and C++ type/function definitions in order to expose those items to both languages.
- To view the generated Rust code, use cargo-expand to view the expanded proc macro. For most of the examples you would use
cargo expand ::ffi
to expand just theffi
module (though this doesn’t apply for Android projects). - To view the generated C++ code, look in
target/cxxbridge
.
Rust Bridge Declarations
#[cxx::bridge]
mod ffi {
extern "Rust" {
type MyType; // Opaque type
fn foo(&self); // Method on `MyType`
fn bar() -> Box<MyType>; // Free function
}
}
struct MyType(i32);
impl MyType {
fn foo(&self) {
println!("{}", self.0);
}
}
fn bar() -> Box<MyType> {
Box::new(MyType(123))
}
Speaker Notes
- Items declared in the
extern "Rust"
reference items that are in scope in the parent module. - The CXX code generator uses your
extern "Rust"
section(s) to produce a C++ header file containing the corresponding C++ declarations. The generated header has the same path as the Rust source file containing the bridge, except with a .rs.h file extension.
Generated C++
#[cxx::bridge]
mod ffi {
// Rust types and signatures exposed to C++.
extern "Rust" {
type MultiBuf;
fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}
}
Results in (roughly) the following C++:
struct MultiBuf final : public ::rust::Opaque {
~MultiBuf() = delete;
private:
friend ::rust::layout;
struct layout {
static ::std::size_t size() noexcept;
static ::std::size_t align() noexcept;
};
};
::rust::Slice<::std::uint8_t const> next_chunk(::org::blobstore::MultiBuf &buf) noexcept;
C++ Bridge Declarations
#[cxx::bridge]
mod ffi {
// C++ types and signatures exposed to Rust.
unsafe extern "C++" {
include!("include/blobstore.h");
type BlobstoreClient;
fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);
fn metadata(&self, blobid: u64) -> BlobMetadata;
}
}
Results in (roughly) the following Rust:
#[repr(C)]
pub struct BlobstoreClient {
_private: ::cxx::private::Opaque,
}
pub fn new_blobstore_client() -> ::cxx::UniquePtr<BlobstoreClient> {
extern "C" {
#[link_name = "org$blobstore$cxxbridge1$new_blobstore_client"]
fn __new_blobstore_client() -> *mut BlobstoreClient;
}
unsafe { ::cxx::UniquePtr::from_raw(__new_blobstore_client()) }
}
impl BlobstoreClient {
pub fn put(&self, parts: &mut MultiBuf) -> u64 {
extern "C" {
#[link_name = "org$blobstore$cxxbridge1$BlobstoreClient$put"]
fn __put(
_: &BlobstoreClient,
parts: *mut ::cxx::core::ffi::c_void,
) -> u64;
}
unsafe {
__put(self, parts as *mut MultiBuf as *mut ::cxx::core::ffi::c_void)
}
}
}
// ...
Speaker Notes
- The programmer does not need to promise that the signatures they have typed in are accurate. CXX performs static assertions that the signatures exactly correspond with what is declared in C++.
unsafe extern
blocks allow you to declare C++ functions that are safe to call from Rust.
Shared Types
#[cxx::bridge]
mod ffi {
#[derive(Clone, Debug, Hash)]
struct PlayingCard {
suit: Suit,
value: u8, // A=1, J=11, Q=12, K=13
}
enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,
}
}
Speaker Notes
- Only C-like (unit) enums are supported.
- A limited number of traits are supported for
#[derive()]
on shared types. Corresponding functionality is also generated for the C++ code, e.g. if you deriveHash
also generates an implementation ofstd::hash
for the corresponding C++ type.
Shared Enums
#[cxx::bridge]
mod ffi {
enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,
}
}
Generated Rust:
Generated C++:
enum class Suit : uint8_t {
Clubs = 0,
Diamonds = 1,
Hearts = 2,
Spades = 3,
};
Speaker Notes
- On the Rust side, the code generated for shared enums is actually a struct wrapping a numeric value. This is because it is not UB in C++ for an enum class to hold a value different from all of the listed variants, and our Rust representation needs to have the same behavior.
Rust Error Handling
#[cxx::bridge]
mod ffi {
extern "Rust" {
fn fallible(depth: usize) -> Result<String>;
}
}
fn fallible(depth: usize) -> anyhow::Result<String> {
if depth == 0 {
return Err(anyhow::Error::msg("fallible1 requires depth > 0"));
}
Ok("Success!".into())
}
Speaker Notes
- Rust functions that return
Result
are translated to exceptions on the C++ side. - The exception thrown will always be of type
rust::Error
, which primarily exposes a way to get the error message string. The error message will come from the error type’sDisplay
impl. - A panic unwinding from Rust to C++ will always cause the process to immediately terminate.
C++ Error Handling
#[cxx::bridge]
mod ffi {
unsafe extern "C++" {
include!("example/include/example.h");
fn fallible(depth: usize) -> Result<String>;
}
}
fn main() {
if let Err(err) = ffi::fallible(99) {
eprintln!("Error: {}", err);
process::exit(1);
}
}
Speaker Notes
- C++ functions declared to return a
Result
will catch any thrown exception on the C++ side and return it as anErr
value to the calling Rust function. - If an exception is thrown from an extern “C++” function that is not declared by the CXX bridge to return
Result
, the program calls C++’sstd::terminate
. The behavior is equivalent to the same exception being thrown through anoexcept
C++ function.
Additional Types
Rust Type | C++ Type |
---|---|
String | rust::String |
&str | rust::Str |
CxxString | std::string |
&[T] /&mut [T] | rust::Slice |
Box<T> | rust::Box<T> |
UniquePtr<T> | std::unique_ptr<T> |
Vec<T> | rust::Vec<T> |
CxxVector<T> | std::vector<T> |
Speaker Notes
- These types can be used in the fields of shared structs and the arguments and returns of extern functions.
- Note that Rust’s
String
does not map directly tostd::string
. There are a few reasons for this:std::string
does not uphold the UTF-8 invariant thatString
requires.- The two types have different layouts in memory and so can’t be passed directly between languages.
std::string
requires move constructors that don’t match Rust’s move semantics, so astd::string
can’t be passed by value to Rust.
Building in Android
Create a cc_library_static
to build the C++ library, including the CXX generated header and source file.
cc_library_static {
name: "libcxx_test_cpp",
srcs: ["cxx_test.cpp"],
generated_headers: [
"cxx-bridge-header",
"libcxx_test_bridge_header"
],
generated_sources: ["libcxx_test_bridge_code"],
}
Speaker Notes
- Point out that
libcxx_test_bridge_header
andlibcxx_test_bridge_code
are the dependencies for the CXX-generated C++ bindings. We’ll show how these are setup on the next slide. - Note that you also need to depend on the
cxx-bridge-header
library in order to pull in common CXX definitions. - Full docs for using CXX in Android can be found in the Android docs. You may want to share that link with the class so that students know where they can find these instructions again in the future.
Building in Android
Create two genrules: One to generate the CXX header, and one to generate the CXX source file. These are then used as inputs to the cc_library_static
.
// Generate a C++ header containing the C++ bindings
// to the Rust exported functions in lib.rs.
genrule {
name: "libcxx_test_bridge_header",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) --header > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.h"],
}
// Generate the C++ code that Rust calls into.
genrule {
name: "libcxx_test_bridge_code",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.cc"],
}
Speaker Notes
- The
cxxbridge
tool is a standalone tool that generates the C++ side of the bridge module. It is included in Android and available as a Soong tool. - By convention, if your Rust source file is
lib.rs
your header file will be namedlib.rs.h
and your source file will be namedlib.rs.cc
. This naming convention isn’t enforced, though.
Building in Android
Create a rust_binary
that depends on libcxx
and your cc_library_static
.
rust_binary {
name: "cxx_test",
srcs: ["lib.rs"],
rustlibs: ["libcxx"],
static_libs: ["libcxx_test_cpp"],
}
Interoperability with Java
Java can load shared objects via Java Native Interface (JNI). The jni
crate allows you to create a compatible library.
First, we create a Rust function to export to Java:
interoperability/java/src/lib.rs:
interoperability/java/Android.bp:
rust_ffi_shared {
name: "libhello_jni",
crate_name: "hello_jni",
srcs: ["src/lib.rs"],
rustlibs: ["libjni"],
}
We then call this function from Java:
interoperability/java/HelloWorld.java:
class HelloWorld {
private static native String hello(String name);
static {
System.loadLibrary("hello_jni");
}
public static void main(String[] args) {
String output = HelloWorld.hello("Alice");
System.out.println(output);
}
}
interoperability/java/Android.bp:
java_binary {
name: "helloworld_jni",
srcs: ["HelloWorld.java"],
main_class: "HelloWorld",
required: ["libhello_jni"],
}
Finally, you can build, sync, and run the binary:
m helloworld_jni
adb sync # requires adb root && adb remount
adb shell /system/bin/helloworld_jni
Exercises
This is a group exercise: We will look at one of the projects you work with and try to integrate some Rust into it. Some suggestions:
-
Call your AIDL service with a client written in Rust.
-
Move a function from your project to Rust and call it.
Speaker Notes
No solution is provided here since this is open-ended: it relies on someone in the class having a piece of code which you can turn in to Rust on the fly.
Welcome to Rust in Chromium
Rust is supported for third-party libraries in Chromium, with first-party glue code to connect between Rust and existing Chromium C++ code.
Today, we’ll call into Rust to do something silly with strings. If you’ve got a corner of the code where you’re displaying a UTF8 string to the user, feel free to follow this recipe in your part of the codebase instead of the exact part we talk about.
Setup
Make sure you can build and run Chromium. Any platform and set of build flags is OK, so long as your code is relatively recent (commit position 1223636 onwards, corresponding to November 2023):
gn gen out/Debug
autoninja -C out/Debug chrome
out/Debug/chrome # or on Mac, out/Debug/Chromium.app/Contents/MacOS/Chromium
(A component, debug build is recommended for quickest iteration time. This is the default!)
See How to build Chromium if you aren’t already at that point. Be warned: setting up to build Chromium takes time.
It’s also recommended that you have Visual Studio code installed.
About the exercises
This part of the course has a series of exercises which build on each other. We’ll be doing them spread throughout the course instead of just at the end. If you don’t have time to complete a certain part, don’t worry: you can catch up in the next slot.
Comparing Chromium and Cargo Ecosystems
The Rust community typically uses cargo
and libraries from crates.io. Chromium is built using gn
and ninja
and a curated set of dependencies.
When writing code in Rust, your choices are:
- Use
gn
andninja
with the help of the templates from//build/rust/*.gni
(e.g.rust_static_library
that we’ll meet later). This uses Chromium’s audited toolchain and crates. - Use
cargo
, but restrict yourself to Chromium’s audited toolchain and crates - Use
cargo
, trusting a toolchain and/or crates downloaded from the internet
From here on we’ll be focusing on gn
and ninja
, because this is how Rust code can be built into the Chromium browser. At the same time, Cargo is an important part of the Rust ecosystem and you should keep it in your toolbox.
Mini exercise
Split into small groups and:
- Brainstorm scenarios where
cargo
may offer an advantage and assess the risk profile of these scenarios. - Discuss which tools, libraries, and groups of people need to be trusted when using
gn
andninja
, offlinecargo
, etc.
Speaker Notes
Ask students to avoid peeking at the speaker notes before completing the exercise. Assuming folks taking the course are physically together, ask them to discuss in small groups of 3-4 people.
Notes/hints related to the first part of the exercise (“scenarios where Cargo may offer an advantage”):
-
It’s fantastic that when writing a tool, or prototyping a part of Chromium, one has access to the rich ecosystem of crates.io libraries. There is a crate for almost anything and they are usually quite pleasant to use. (
clap
for command-line parsing,serde
for serializing/deserializing to/from various formats,itertools
for working with iterators, etc.).cargo
makes it easy to try a library (just add a single line toCargo.toml
and start writing code)- It may be worth comparing how CPAN helped make
perl
a popular choice. Or comparing withpython
+pip
.
-
Development experience is made really nice not only by core Rust tools (e.g. using
rustup
to switch to a differentrustc
version when testing a crate that needs to work on nightly, current stable, and older stable) but also by an ecosystem of third-party tools (e.g. Mozilla providescargo vet
for streamlining and sharing security audits;criterion
crate gives a streamlined way to run benchmarks).cargo
makes it easy to add a tool viacargo install --locked cargo-vet
.- It may be worth comparing with Chrome Extensions or VScode extensions.
-
Broad, generic examples of projects where
cargo
may be the right choice:- Perhaps surprisingly, Rust is becoming increasingly popular in the industry for writing command line tools. The breadth and ergonomics of libraries is comparable to Python, while being more robust (thanks to the rich typesystem) and running faster (as a compiled, rather than interpreted language).
- Participating in the Rust ecosystem requires using standard Rust tools like Cargo. Libraries that want to get external contributions, and want to be used outside of Chromium (e.g. in Bazel or Android/Soong build environments) should probably use Cargo.
-
Examples of Chromium-related projects that are
cargo
-based:serde_json_lenient
(experimented with in other parts of Google which resulted in PRs with performance improvements)- Fontations libraries like
font-types
gnrt
tool (we will meet it later in the course) which depends onclap
for command-line parsing and ontoml
for configuration files.- Disclaimer: a unique reason for using
cargo
was unavailability ofgn
when building and bootstrapping Rust standard library when building Rust toolchain. run_gnrt.py
uses Chromium’s copy ofcargo
andrustc
.gnrt
depends on third-party libraries downloaded from the internet, butrun_gnrt.py
askscargo
that only--locked
content is allowed viaCargo.lock
.)
- Disclaimer: a unique reason for using
Students may identify the following items as being implicitly or explicitly trusted:
rustc
(the Rust compiler) which in turn depends on the LLVM libraries, the Clang compiler, therustc
sources (fetched from GitHub, reviewed by Rust compiler team), binary Rust compiler downloaded for bootstrappingrustup
(it may be worth pointing out thatrustup
is developed under the umbrella of the https://github.com/rust-lang/ organization - same asrustc
)cargo
,rustfmt
, etc.- Various internal infrastructure (bots that build
rustc
, system for distributing the prebuilt toolchain to Chromium engineers, etc.) - Cargo tools like
cargo audit
,cargo vet
, etc. - Rust libraries vendored into
//third_party/rust
(audited by security@chromium.org) - Other Rust libraries (some niche, some quite popular and commonly used)
Chromium Rust policy
Chromium does not yet allow first-party Rust except in rare cases as approved by Chromium’s Area Tech Leads.
Chromium’s policy on third party libraries is outlined here - Rust is allowed for third party libraries under various circumstances, including if they’re the best option for performance or for security.
Very few Rust libraries directly expose a C/C++ API, so that means that nearly all such libraries will require a small amount of first-party glue code.
First-party Rust glue code for a particular third-party crate should normally be kept in
third_party/rust/<crate>/<version>/wrapper
.
Because of this, today’s course will be heavily focused on:
- Bringing in third-party Rust libraries (“crates”)
- Writing glue code to be able to use those crates from Chromium C++.
If this policy changes over time, the course will evolve to keep up.
Build rules
Rust code is usually built using cargo
. Chromium builds with gn
and ninja
for efficiency — its static rules allow maximum parallelism. Rust is no exception.
Adding Rust code to Chromium
In some existing Chromium BUILD.gn
file, declare a rust_static_library
:
import("//build/rust/rust_static_library.gni")
rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [ "lib.rs" ]
}
You can also add deps
on other Rust targets. Later we’ll use this to depend upon third party code.
Speaker Notes
You must specify both the crate root, and a full list of sources. The crate_root
is the file given to the Rust compiler representing the root file of the compilation unit — typically lib.rs
. sources
is a complete list of all source files which ninja
needs in order to determine when rebuilds are necessary.
(There’s no such thing as a Rust source_set
, because in Rust, an entire crate is a compilation unit. A static_library
is the smallest unit.)
Students might be wondering why we need a gn template, rather than using gn’s built-in support for Rust static libraries. The answer is that this template provides support for CXX interop, Rust features, and unit tests, some of which we’ll use later.
Including unsafe
Rust Code
Unsafe Rust code is forbidden in rust_static_library
by default — it won’t compile. If you need unsafe Rust code, add allow_unsafe = true
to the gn target. (Later in the course we’ll see circumstances where this is necessary.)
import("//build/rust/rust_static_library.gni")
rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [
"lib.rs",
"hippopotamus.rs"
]
allow_unsafe = true
}
Depending on Rust Code from Chromium C++
Simply add the above target to the deps
of some Chromium C++ target.
import("//build/rust/rust_static_library.gni")
rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [ "lib.rs" ]
}
# or source_set, static_library etc.
component("preexisting_cpp") {
deps = [ ":my_rust_lib" ]
}
Speaker Notes
We'll see that this relationship only works if the Rust code exposes plain C APIs
which can be called from C++, or if we use a C++/Rust interop tool.
Visual Studio Code
Types are elided in Rust code, which makes a good IDE even more useful than for C++. Visual Studio code works well for Rust in Chromium. To use it,
- Ensure your VSCode has the
rust-analyzer
extension, not earlier forms of Rust support gn gen out/Debug --export-rust-project
(or equivalent for your output directory)ln -s out/Debug/rust-project.json rust-project.json

Speaker Notes
A demo of some of the code annotation and exploration features of rust-analyzer might be beneficial if the audience are naturally skeptical of IDEs.
The following steps may help with the demo (but feel free to instead use a piece of Chromium-related Rust that you are most familiar with):
- Open
components/qr_code_generator/qr_code_generator_ffi_glue.rs
- Place the cursor over the
QrCode::new
call (around line 26) in `qr_code_generator_ffi_glue.rs - Demo show documentation (typical bindings: vscode = ctrl k i; vim/CoC = K).
- Demo go to definition (typical bindings: vscode = F12; vim/CoC = g d). (This will take you to
//third_party/rust/.../qr_code-.../src/lib.rs
.) - Demo outline and navigate to the
QrCode::with_bits
method (around line 164; the outline is in the file explorer pane in vscode; typical vim/CoC bindings = space o) - Demo type annotations (there are quote a few nice examples in the
QrCode::with_bits
method)
It may be worth pointing out that gn gen ... --export-rust-project
will need to be rerun after editing BUILD.gn
files (which we will do a few times throughout the exercises in this session).
Build rules exercise
In your Chromium build, add a new Rust target to //ui/base/BUILD.gn
containing:
Important: note that no_mangle
here is considered a type of unsafety by the Rust compiler, so you’ll need to allow unsafe code in your gn
target.
Add this new Rust target as a dependency of //ui/base:base
. Declare this function at the top of ui/base/resource/resource_bundle.cc
(later, we’ll see how this can be automated by bindings generation tools):
extern "C" void hello_from_rust();
Call this function from somewhere in ui/base/resource/resource_bundle.cc
- we suggest the top of ResourceBundle::MaybeMangleLocalizedString
. Build and run Chromium, and ensure that “Hello from Rust!” is printed lots of times.
If you use VSCode, now set up Rust to work well in VSCode. It will be useful in subsequent exercises. If you’ve succeeded, you will be able to use right-click “Go to definition” on println!
.
Where to find help
- The options available to the
rust_static_library
gn template - Information about
#[no_mangle]
- Information about
extern "C"
- Information about gn’s
--export-rust-project
switch - How to install rust-analyzer in VSCode
Speaker Notes
It's really important that students get this running, because future exercises
will build on it.
This example is unusual because it boils down to the lowest-common-denominator interop language, C. Both C++ and Rust can natively declare and call C ABI functions. Later in the course, we’ll connect C++ directly to Rust.
allow_unsafe = true
is required here because #[no_mangle]
might allow Rust to generate two functions with the same name, and Rust can no longer guarantee that the right one is called.
If you need a pure Rust executable, you can also do that using the rust_executable
gn template.
Testing
Rust community typically authors unit tests in a module placed in the same source file as the code being tested. This was covered earlier in the course and looks like this:
In Chromium we place unit tests in a separate source file and we continue to follow this practice for Rust — this makes tests consistently discoverable and helps to avoid rebuilding .rs
files a second time (in the test
configuration).
This results in the following options for testing Rust code in Chromium:
- Native Rust tests (i.e.
#[test]
). Discouraged outside of//third_party/rust
. gtest
tests authored in C++ and exercising Rust via FFI calls. Sufficient when Rust code is just a thin FFI layer and the existing unit tests provide sufficient coverage for the feature.gtest
tests authored in Rust and using the crate under test through its public API (usingpub mod for_testing { ... }
if needed). This is the subject of the next few slides.
Speaker Notes
Mention that native Rust tests of third-party crates should eventually be exercised by Chromium bots. (Such testing is needed rarely — only after adding or updating third-party crates.)
Some examples may help illustrate when C++ gtest
vs Rust gtest
should be used:
-
QR has very little functionality in the first-party Rust layer (it’s just a thin FFI glue) and therefore uses the existing C++ unit tests for testing both the C++ and the Rust implementation (parameterizing the tests so they enable or disable Rust using a
ScopedFeatureList
). -
Hypothetical/WIP PNG integration may need to implement memory-safe implementation of pixel transformations that are provided by
libpng
but missing in thepng
crate - e.g. RGBA => BGRA, or gamma correction. Such functionality may benefit from separate tests authored in Rust.
rust_gtest_interop
Library
The rust_gtest_interop
library provides a way to:
- Use a Rust function as a
gtest
testcase (using the#[gtest(...)]
attribute) - Use
expect_eq!
and similar macros (similar toassert_eq!
but not panicking and not terminating the test when the assertion fails).
Example:
use rust_gtest_interop::prelude::*;
#[gtest(MyRustTestSuite, MyAdditionTest)]
fn test_addition() {
expect_eq!(2 + 2, 4);
}
GN Rules for Rust Tests
The simplest way to build Rust gtest
tests is to add them to an existing test binary that already contains tests authored in C++. For example:
test("ui_base_unittests") {
...
sources += [ "my_rust_lib_unittest.rs" ]
deps += [ ":my_rust_lib" ]
}
Authoring Rust tests in a separate static_library
also works, but requires manually declaring the dependency on the support libraries:
rust_static_library("my_rust_lib_unittests") {
testonly = true
is_gtest_unittests = true
crate_root = "my_rust_lib_unittest.rs"
sources = [ "my_rust_lib_unittest.rs" ]
deps = [
":my_rust_lib",
"//testing/rust_gtest_interop",
]
}
test("ui_base_unittests") {
...
deps += [ ":my_rust_lib_unittests" ]
}
chromium::import!
Macro
After adding :my_rust_lib
to GN deps
, we still need to learn how to import and use my_rust_lib
from my_rust_lib_unittest.rs
. We haven’t provided an explicit crate_name
for my_rust_lib
so its crate name is computed based on the full target path and name. Fortunately we can avoid working with such an unwieldy name by using the chromium::import!
macro from the automatically-imported chromium
crate:
chromium::import! {
"//ui/base:my_rust_lib";
}
use my_rust_lib::my_function_under_test;
Under the covers the macro expands to something similar to:
extern crate ui_sbase_cmy_urust_ulib as my_rust_lib;
use my_rust_lib::my_function_under_test;
More information can be found in the doc comment of the chromium::import
macro.
Speaker Notes
rust_static_library
supports specifying an explicit name via crate_name
property, but doing this is discouraged. And it is discouraged because the crate name has to be globally unique. crates.io guarantees uniqueness of its crate names so cargo_crate
GN targets (generated by the gnrt
tool covered in a later section) use short crate names.
Testing exercise
Time for another exercise!
In your Chromium build:
- Add a testable function next to
hello_from_rust
. Some suggestions: adding two integers received as arguments, computing the nth Fibonacci number, summing integers in a slice, etc. - Add a separate
..._unittest.rs
file with a test for the new function. - Add the new tests to
BUILD.gn
. - Build the tests, run them, and verify that the new test works.
Interoperability with C++
The Rust community offers multiple options for C++/Rust interop, with new tools being developed all the time. At the moment, Chromium uses a tool called CXX.
You describe your whole language boundary in an interface definition language (which looks a lot like Rust) and then CXX tools generate declarations for functions and types in both Rust and C++.
See the CXX tutorial for a full example of using this.
Speaker Notes
Talk through the diagram. Explain that behind the scenes, this is doing just the same as you previously did. Point out that automating the process has the following benefits:
- The tool guarantees that the C++ and Rust sides match (e.g. you get compile errors if the
#[cxx::bridge]
doesn’t match the actual C++ or Rust definitions, but with out-of-sync manual bindings you’d get Undefined Behavior) - The tool automates generation of FFI thunks (small, C-ABI-compatible, free functions) for non-C features (e.g. enabling FFI calls into Rust or C++ methods; manual bindings would require authoring such top-level, free functions manually)
- The tool and the library can handle a set of core types - for example:
&[T]
can be passed across the FFI boundary, even though it doesn’t guarantee any particular ABI or memory layout. With manual bindingsstd::span<T>
/&[T]
have to be manually destructured and rebuilt out of a pointer and length - this is error-prone given that each language represents empty slices slightly differently)- Smart pointers like
std::unique_ptr<T>
,std::shared_ptr<T>
, and/orBox
are natively supported. With manual bindings, one would have to pass C-ABI-compatible raw pointers, which would increase lifetime and memory-safety risks. rust::String
andCxxString
types understand and maintain differences in string representation across the languages (e.g.rust::String::lossy
can build a Rust string from non-UTF8 input andrust::String::c_str
can NUL-terminate a string).
Example Bindings
CXX requires that the whole C++/Rust boundary is declared in cxx::bridge
modules inside .rs
source code.
#[cxx::bridge]
mod ffi {
extern "Rust" {
type MultiBuf;
fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}
unsafe extern "C++" {
include!("example/include/blobstore.h");
type BlobstoreClient;
fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;
}
}
// Definitions of Rust types and functions go here
Speaker Notes
Point out:
- Although this looks like a regular Rust
mod
, the#[cxx::bridge]
procedural macro does complex things to it. The generated code is quite a bit more sophisticated - though this does still result in amod
calledffi
in your code. - Native support for C++’s
std::unique_ptr
in Rust - Native support for Rust slices in C++
- Calls from C++ to Rust, and Rust types (in the top part)
- Calls from Rust to C++, and C++ types (in the bottom part)
Common misconception: It looks like a C++ header is being parsed by Rust, but this is misleading. This header is never interpreted by Rust, but simply #include
d in the generated C++ code for the benefit of C++ compilers.
Limitations of CXX
By far the most useful page when using CXX is the type reference.
CXX fundamentally suits cases where:
- Your Rust-C++ interface is sufficiently simple that you can declare all of it.
- You’re using only the types natively supported by CXX already, for example
std::unique_ptr
,std::string
,&[u8]
etc.
It has many limitations — for example lack of support for Rust’s Option
type.
These limitations constrain us to using Rust in Chromium only for well isolated “leaf nodes” rather than for arbitrary Rust-C++ interop. When considering a use-case for Rust in Chromium, a good starting point is to draft the CXX bindings for the language boundary to see if it appears simple enough.
Speaker Notes
In addition, right now, Rust code in one component cannot depend on Rust
code in another, due to linking details in our component build. That's another
reason to restrict Rust to use in leaf nodes.
You should also discuss some of the other sticky points with CXX, for example:
- Its error handling is based around C++ exceptions (given on the next slide)
- Function pointers are awkward to use.
CXX Error Handling
CXX’s support for Result<T,E>
relies on C++ exceptions, so we can’t use that in Chromium. Alternatives:
-
The
T
part ofResult<T, E>
can be:- Returned via out parameters (e.g. via
&mut T
). This requires thatT
can be passed across the FFI boundary - for exampleT
has to be:- A primitive type (like
u32
orusize
) - A type natively supported by
cxx
(likeUniquePtr<T>
) that has a suitable default value to use in a failure case (unlikeBox<T>
).
- A primitive type (like
- Retained on the Rust side, and exposed via reference. This may be needed when
T
is a Rust type, which cannot be passed across the FFI boundary, and cannot be stored inUniquePtr<T>
.
- Returned via out parameters (e.g. via
-
The
E
part ofResult<T, E>
can be:- Returned as a boolean (e.g.
true
representing success, andfalse
representing failure) - Preserving error details is in theory possible, but so far hasn’t been needed in practice.
- Returned as a boolean (e.g.
CXX Error Handling: QR Example
The QR code generator is an example where a boolean is used to communicate success vs failure, and where the successful result can be passed across the FFI boundary:
#[cxx::bridge(namespace = "qr_code_generator")]
mod ffi {
extern "Rust" {
fn generate_qr_code_using_rust(
data: &[u8],
min_version: i16,
out_pixels: Pin<&mut CxxVector<u8>>,
out_qr_size: &mut usize,
) -> bool;
}
}
Speaker Notes
Students may be curious about the semantics of the out_qr_size
output. This is not the size of the vector, but the size of the QR code (and admittedly it is a bit redundant - this is the square root of the size of the vector).
It may be worth pointing out the importance of initializing out_qr_size
before calling into the Rust function. Creation of a Rust reference that points to uninitialized memory results in Undefined Behavior (unlike in C++, when only the act of dereferencing such memory results in UB).
If students ask about Pin
, then explain why CXX needs it for mutable references to C++ data: the answer is that C++ data can’t be moved around like Rust data, because it may contain self-referential pointers.
CXX Error Handling: PNG Example
A prototype of a PNG decoder illustrates what can be done when the successful result cannot be passed across the FFI boundary:
#[cxx::bridge(namespace = "gfx::rust_bindings")]
mod ffi {
extern "Rust" {
/// This returns an FFI-friendly equivalent of `Result<PngReader<'a>,
/// ()>`.
fn new_png_reader<'a>(input: &'a [u8]) -> Box<ResultOfPngReader<'a>>;
/// C++ bindings for the `crate::png::ResultOfPngReader` type.
type ResultOfPngReader<'a>;
fn is_err(self: &ResultOfPngReader) -> bool;
fn unwrap_as_mut<'a, 'b>(
self: &'b mut ResultOfPngReader<'a>,
) -> &'b mut PngReader<'a>;
/// C++ bindings for the `crate::png::PngReader` type.
type PngReader<'a>;
fn height(self: &PngReader) -> u32;
fn width(self: &PngReader) -> u32;
fn read_rgba8(self: &mut PngReader, output: &mut [u8]) -> bool;
}
}
Speaker Notes
PngReader
and ResultOfPngReader
are Rust types — objects of these types cannot cross the FFI boundary without indirection of a Box<T>
. We can’t have an out_parameter: &mut PngReader
, because CXX doesn’t allow C++ to store Rust objects by value.
This example illustrates that even though CXX doesn’t support arbitrary generics nor templates, we can still pass them across the FFI boundary by manually specializing / monomorphizing them into a non-generic type. In the example ResultOfPngReader
is a non-generic type that forwards into appropriate methods of Result<T, E>
(e.g. into is_err
, unwrap
, and/or as_mut
).
Using cxx in Chromium
In Chromium, we define an independent #[cxx::bridge] mod
for each leaf-node where we want to use Rust. You’d typically have one for each rust_static_library
. Just add
cxx_bindings = [ "my_rust_file.rs" ]
# list of files containing #[cxx::bridge], not all source files
allow_unsafe = true
to your existing rust_static_library
target alongside crate_root
and sources
.
C++ headers will be generated at a sensible location, so you can just
#include "ui/base/my_rust_file.rs.h"
You will find some utility functions in //base
to convert to/from Chromium C++ types to CXX Rust types — for example SpanToRustSlice
.
Speaker Notes
Students may ask — why do we still need allow_unsafe = true
?
The broad answer is that no C/C++ code is “safe” by the normal Rust standards. Calling back and forth to C/C++ from Rust may do arbitrary things to memory, and compromise the safety of Rust’s own data layouts. Presence of too many unsafe
keywords in C/C++ interop can harm the signal-to-noise ratio of such a keyword, and is controversial, but strictly, bringing any foreign code into a Rust binary can cause unexpected behavior from Rust’s perspective.
The narrow answer lies in the diagram at the top of this page — behind the scenes, CXX generates Rust unsafe
and extern "C"
functions just like we did manually in the previous section.
Exercise: Interoperability with C++
Part one
- In the Rust file you previously created, add a
#[cxx::bridge]
which specifies a single function, to be called from C++, calledhello_from_rust
, taking no parameters and returning no value. - Modify your previous
hello_from_rust
function to removeextern "C"
and#[no_mangle]
. This is now just a standard Rust function. - Modify your
gn
target to build these bindings. - In your C++ code, remove the forward-declaration of
hello_from_rust
. Instead, include the generated header file. - Build and run!
Part two
It’s a good idea to play with CXX a little. It helps you think about how flexible Rust in Chromium actually is.
Some things to try:
- Call back into C++ from Rust. You will need:
- An additional header file which you can
include!
from yourcxx::bridge
. You’ll need to declare your C++ function in that new header file. - An
unsafe
block to call such a function, or alternatively specify theunsafe
keyword in your#[cxx::bridge]
as described here. - You may also need to
#include "third_party/rust/cxx/v1/crate/include/cxx.h"
- An additional header file which you can
- Pass a C++ string from C++ into Rust.
- Pass a reference to a C++ object into Rust.
- Intentionally get the Rust function signatures mismatched from the
#[cxx::bridge]
, and get used to the errors you see. - Intentionally get the C++ function signatures mismatched from the
#[cxx::bridge]
, and get used to the errors you see. - Pass a
std::unique_ptr
of some type from C++ into Rust, so that Rust can own some C++ object. - Create a Rust object and pass it into C++, so that C++ owns it. (Hint: you need a
Box
). - Declare some methods on a C++ type. Call them from Rust.
- Declare some methods on a Rust type. Call them from C++.
Part three
Now you understand the strengths and limitations of CXX interop, think of a couple of use-cases for Rust in Chromium where the interface would be sufficiently simple. Sketch how you might define that interface.
Where to find help
Speaker Notes
As students explore Part Two, they're bound to have lots of questions about how
to achieve these things, and also how CXX works behind the scenes.
Some of the questions you may encounter:
- I’m seeing a problem initializing a variable of type X with type Y, where X and Y are both function types. This is because your C++ function doesn’t quite match the declaration in your
cxx::bridge
. - I seem to be able to freely convert C++ references into Rust references. Doesn’t that risk UB? For CXX’s opaque types, no, because they are zero-sized. For CXX trivial types yes, it’s possible to cause UB, although CXX’s design makes it quite difficult to craft such an example.
Adding Third Party Crates
Rust libraries are called “crates” and are found at crates.io. It’s very easy for Rust crates to depend upon one another. So they do!
Property | C++ library | Rust crate |
---|---|---|
Build system | Lots | Consistent: Cargo.toml |
Typical library size | Large-ish | Small |
Transitive dependencies | Few | Lots |
For a Chromium engineer, this has pros and cons:
- All crates use a common build system so we can automate their inclusion into Chromium…
- … but, crates typically have transitive dependencies, so you will likely have to bring in multiple libraries.
We’ll discuss:
- How to put a crate in the Chromium source code tree
- How to make
gn
build rules for it - How to audit its source code for sufficient safety.
Speaker Notes
All of the things in the table on this slide are generalizations, and
counter-examples can be found. But in general it's important for students
to understand that most Rust code depends on other Rust libraries, because
it's easy to do so, and that this has both benefits and costs.
Configuring the Cargo.toml
file to add crates
Chromium has a single set of centrally-managed direct crate dependencies. These are managed through a single Cargo.toml
:
[dependencies]
bitflags = "1"
cfg-if = "1"
cxx = "1"
# lots more...
As with any other Cargo.toml
, you can specify more details about the dependencies — most commonly, you’ll want to specify the features
that you wish to enable in the crate.
When adding a crate to Chromium, you’ll often need to provide some extra information in an additional file, gnrt_config.toml
, which we’ll meet next.
Configuring gnrt_config.toml
Alongside Cargo.toml
is gnrt_config.toml
. This contains Chromium-specific extensions to crate handling.
If you add a new crate, you should specify at least the group
. This is one of:
# 'safe': The library satisfies the rule-of-2 and can be used in any process.
# 'sandbox': The library does not satisfy the rule-of-2 and must be used in
# a sandboxed process such as the renderer or a utility process.
# 'test': The library is only used in tests.
For instance,
[crate.my-new-crate]
group = 'test' # only used in test code
Depending on the crate source code layout, you may also need to use this file to specify where its LICENSE
file(s) can be found.
Later, we’ll see some other things you will need to configure in this file to resolve problems.
Downloading Crates
A tool called gnrt
knows how to download crates and how to generate BUILD.gn
rules.
To start, download the crate you want like this:
cd chromium/src
vpython3 tools/crates/run_gnrt.py -- vendor
Although the
gnrt
tool is part of the Chromium source code, by running this command you will be downloading and running its dependencies fromcrates.io
. See the earlier section discussing this security decision.
This vendor
command may download:
- Your crate
- Direct and transitive dependencies
- New versions of other crates, as required by
cargo
to resolve the complete set of crates required by Chromium.
Chromium maintains patches for some crates, kept in //third_party/rust/chromium_crates_io/patches
. These will be reapplied automatically, but if patching fails you may need to take manual action.
Generating gn
Build Rules
Once you’ve downloaded the crate, generate the BUILD.gn
files like this:
vpython3 tools/crates/run_gnrt.py -- gen
Now run git status
. You should find:
- At least one new crate source code in
third_party/rust/chromium_crates_io/vendor
- At least one new
BUILD.gn
inthird_party/rust/<crate name>/v<major semver version>
- An appropriate
README.chromium
The “major semver version” is a Rust “semver” version number.
Take a close look, especially at the things generated in third_party/rust
.
Speaker Notes
Talk a little about semver — and specifically the way that in Chromium it’s to allow multiple incompatible versions of a crate, which is discouraged but sometimes necessary in the Cargo ecosystem.
Resolving Problems
If your build fails, it may be because of a build.rs
: programs which do arbitrary things at build time. This is fundamentally at odds with the design of gn
and ninja
which aim for static, deterministic, build rules to maximize parallelism and repeatability of builds.
Some build.rs
actions are automatically supported; others require action:
build script effect | Supported by our gn templates | Work required by you |
---|---|---|
Checking rustc version to configure features on and off | Yes | None |
Checking platform or CPU to configure features on and off | Yes | None |
Generating code | Yes | Yes - specify in gnrt_config.toml |
Building C/C++ | No | Patch around it |
Arbitrary other actions | No | Patch around it |
Fortunately, most crates don’t contain a build script, and fortunately, most build scripts only do the top two actions.
Build Scripts Which Generate Code
If ninja
complains about missing files, check the build.rs
to see if it writes source code files.
If so, modify gnrt_config.toml
to add build-script-outputs
to the crate. If this is a transitive dependency, that is, one on which Chromium code should not directly depend, also add allow-first-party-usage=false
. There are several examples already in that file:
[crate.unicode-linebreak]
allow-first-party-usage = false
build-script-outputs = ["tables.rs"]
Now rerun gnrt.py -- gen
to regenerate BUILD.gn
files to inform ninja that this particular output file is input to subsequent build steps.
Build Scripts Which Build C++ or Take Arbitrary Actions
Some crates use the cc
crate to build and link C/C++ libraries. Other crates parse C/C++ using bindgen
within their build scripts. These actions can’t be supported in a Chromium context — our gn, ninja and LLVM build system is very specific in expressing relationships between build actions.
So, your options are:
- Avoid these crates
- Apply a patch to the crate.
Patches should be kept in third_party/rust/chromium_crates_io/patches/<crate>
- see for example the patches against the cxx
crate - and will be applied automatically by gnrt
each time it upgrades the crate.
Depending on a Crate
Once you’ve added a third-party crate and generated build rules, depending on a crate is simple. Find your rust_static_library
target, and add a dep
on the :lib
target within your crate.
Specifically,
For instance,
rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [ "lib.rs" ]
deps = [ "//third_party/rust/example_rust_crate/v1:lib" ]
}
Auditing Third Party Crates
Adding new libraries is subject to Chromium’s standard policies, but of course also subject to security review. As you may be bringing in not just a single crate but also transitive dependencies, there may be a lot of code to review. On the other hand, safe Rust code can have limited negative side effects. How should you review it?
Over time Chromium aims to move to a process based around cargo vet.
Meanwhile, for each new crate addition, we are checking for the following:
- Understand why each crate is used. What’s the relationship between crates? If the build system for each crate contains a
build.rs
or procedural macros, work out what they’re for. Are they compatible with the way Chromium is normally built? - Check each crate seems to be reasonably well maintained
- Use
cd third-party/rust/chromium_crates_io; cargo audit
to check for known vulnerabilities (first you’ll need tocargo install cargo-audit
, which ironically involves downloading lots of dependencies from the internet2) - Ensure any
unsafe
code is good enough for the Rule of Two - Check for any use of
fs
ornet
APIs - Read all the code at a sufficient level to look for anything out of place that might have been maliciously inserted. (You can’t realistically aim for 100% perfection here: there’s often just too much code.)
These are just guidelines — work with reviewers from security@chromium.org
to work out the right way to become confident of the crate.
Checking Crates into Chromium Source Code
git status
should reveal:
- Crate code in
//third_party/rust/chromium_crates_io
- Metadata (
BUILD.gn
andREADME.chromium
) in//third_party/rust/<crate>/<version>
Please also add an OWNERS
file in the latter location.
You should land all this, along with your Cargo.toml
and gnrt_config.toml
changes, into the Chromium repo.
Important: you need to use git add -f
because otherwise .gitignore
files may result in some files being skipped.
As you do so, you might find presubmit checks fail because of non-inclusive language. This is because Rust crate data tends to include names of git branches, and many projects still use non-inclusive terminology there. So you may need to run:
infra/update_inclusive_language_presubmit_exempt_dirs.sh > infra/inclusive_language_presubmit_exempt_dirs.txt
git add -p infra/inclusive_language_presubmit_exempt_dirs.txt # add whatever changes are yours
Keeping Crates Up to Date
As the OWNER of any third party Chromium dependency, you are expected to keep it up to date with any security fixes. It is hoped that we will soon automate this for Rust crates, but for now, it’s still your responsibility just as it is for any other third party dependency.
Exercise
Add uwuify to Chromium, turning off the crate’s default features. Assume that the crate will be used in shipping Chromium, but won’t be used to handle untrustworthy input.
(In the next exercise we’ll use uwuify from Chromium, but feel free to skip ahead and do that now if you like. Or, you could create a new rust_executable
target which uses uwuify
).
Speaker Notes
Students will need to download lots of transitive dependencies.
The total crates needed are:
instant
,lock_api
,parking_lot
,parking_lot_core
,redox_syscall
,scopeguard
,smallvec
, anduwuify
.
If students are downloading even more than that, they probably forgot to turn off the default features.
Thanks to Daniel Liu for this crate!
Bringing It Together — Exercise
In this exercise, you’re going to add a whole new Chromium feature, bringing together everything you already learned.
The Brief from Product Management
A community of pixies has been discovered living in a remote rainforest. It’s important that we get Chromium for Pixies delivered to them as soon as possible.
The requirement is to translate all Chromium’s UI strings into Pixie language.
There’s not time to wait for proper translations, but fortunately pixie language is very close to English, and it turns out there’s a Rust crate which does the translation.
In fact, you already imported that crate in the previous exercise.
(Obviously, real translations of Chrome require incredible care and diligence. Don’t ship this!)
Steps
Modify ResourceBundle::MaybeMangleLocalizedString
so that it uwuifies all strings before display. In this special build of Chromium, it should always do this irrespective of the setting of mangle_localized_strings_
.
If you’ve done everything right across all these exercises, congratulations, you should have created Chrome for pixies!

Speaker Notes
Students will likely need some hints here. Hints include:
- UTF16 vs UTF8. Students should be aware that Rust strings are always UTF8, and will probably decide that it’s better to do the conversion on the C++ side using
base::UTF16ToUTF8
and back again. - If students decide to do the conversion on the Rust side, they’ll need to consider
String::from_utf16
, consider error handling, and consider which CXX supported types can transfer a lot of u16s. - Students may design the C++/Rust boundary in several different ways, e.g. taking and returning strings by value, or taking a mutable reference to a string. If a mutable reference is used, CXX will likely tell the student that they need to use
Pin
. You may need to explain whatPin
does, and then explain why CXX needs it for mutable references to C++ data: the answer is that C++ data can’t be moved around like Rust data, because it may contain self-referential pointers. - The C++ target containing
ResourceBundle::MaybeMangleLocalizedString
will need to depend on arust_static_library
target. The student probably already did this. - The
rust_static_library
target will need to depend on//third_party/rust/uwuify/v0_2:lib
.
Exercise Solutions
Solutions to the Chromium exercises can be found in this series of CLs.
Welcome to Bare Metal Rust
This is a standalone one-day course about bare-metal Rust, aimed at people who are familiar with the basics of Rust (perhaps from completing the Comprehensive Rust course), and ideally also have some experience with bare-metal programming in some other language such as C.
Today we will talk about ‘bare-metal’ Rust: running Rust code without an OS underneath us. This will be divided into several parts:
- What is
no_std
Rust? - Writing firmware for microcontrollers.
- Writing bootloader / kernel code for application processors.
- Some useful crates for bare-metal Rust development.
For the microcontroller part of the course we will use the BBC micro:bit v2 as an example. It’s a development board based on the Nordic nRF51822 microcontroller with some LEDs and buttons, an I2C-connected accelerometer and compass, and an on-board SWD debugger.
To get started, install some tools we’ll need later. On gLinux or Debian:
sudo apt install gcc-aarch64-linux-gnu gdb-multiarch libudev-dev picocom pkg-config qemu-system-arm
rustup update
rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils cargo-embed
And give users in the plugdev
group access to the micro:bit programmer:
echo 'SUBSYSTEM=="usb", ATTR{idVendor}=="0d28", MODE="0664", GROUP="plugdev"' |\
sudo tee /etc/udev/rules.d/50-microbit.rules
sudo udevadm control --reload-rules
On MacOS:
xcode-select --install
brew install gdb picocom qemu
brew install --cask gcc-aarch64-embedded
rustup update
rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils cargo-embed
no_std
|
|
|
---|---|---|
|
|
|
Speaker Notes
HashMap
depends on RNG.std
re-exports the contents of bothcore
andalloc
.
A minimal no_std
program
Speaker Notes
- This will compile to an empty binary.
std
provides a panic handler; without it we must provide our own.- It can also be provided by another crate, such as
panic-halt
. - Depending on the target, you may need to compile with
panic = "abort"
to avoid an error abouteh_personality
. - Note that there is no
main
or any other entry point; it’s up to you to define your own entry point. This will typically involve a linker script and some assembly code to set things up ready for Rust code to run.
alloc
To use alloc
you must implement a global (heap) allocator.
Speaker Notes
buddy_system_allocator
is a third-party crate implementing a basic buddy system allocator. Other crates are available, or you can write your own or hook into your existing allocator.- The const parameter of
LockedHeap
is the max order of the allocator; i.e. in this case it can allocate regions of up to 2**32 bytes. - If any crate in your dependency tree depends on
alloc
then you must have exactly one global allocator defined in your binary. Usually this is done in the top-level binary crate. extern crate panic_halt as _
is necessary to ensure that thepanic_halt
crate is linked in so we get its panic handler.- This example will build but not run, as it doesn’t have an entry point.
Microcontrollers
The cortex_m_rt
crate provides (among other things) a reset handler for Cortex M microcontrollers.
Next we’ll look at how to access peripherals, with increasing levels of abstraction.
Speaker Notes
- The
cortex_m_rt::entry
macro requires that the function have typefn() -> !
, because returning to the reset handler doesn’t make sense. - Run the example with
cargo embed --bin minimal
Raw MMIO
Most microcontrollers access peripherals via memory-mapped IO. Let’s try turning on an LED on our micro:bit:
Speaker Notes
- GPIO 0 pin 21 is connected to the first column of the LED matrix, and pin 28 to the first row.
Run the example with:
cargo embed --bin mmio
Peripheral Access Crates
svd2rust
generates mostly-safe Rust wrappers for memory-mapped peripherals from CMSIS-SVD files.
Speaker Notes
- SVD (System View Description) files are XML files typically provided by silicon vendors which describe the memory map of the device.
- They are organised by peripheral, register, field and value, with names, descriptions, addresses and so on.
- SVD files are often buggy and incomplete, so there are various projects which patch the mistakes, add missing details, and publish the generated crates.
cortex-m-rt
provides the vector table, among other things.- If you
cargo install cargo-binutils
then you can runcargo objdump --bin pac -- -d --no-show-raw-insn
to see the resulting binary.
Run the example with:
cargo embed --bin pac
HAL crates
HAL crates for many microcontrollers provide wrappers around various peripherals. These generally implement traits from embedded-hal
.
Speaker Notes
set_low
andset_high
are methods on theembedded_hal
OutputPin
trait.- HAL crates exist for many Cortex-M and RISC-V devices, including various STM32, GD32, nRF, NXP, MSP430, AVR and PIC microcontrollers.
Run the example with:
cargo embed --bin hal
Board support crates
Board support crates provide a further level of wrapping for a specific board for convenience.
Speaker Notes
- In this case the board support crate is just providing more useful names, and a bit of initialisation.
- The crate may also include drivers for some on-board devices outside of the microcontroller itself.
microbit-v2
includes a simple driver for the LED matrix.
Run the example with:
cargo embed --bin board_support
The type state pattern
Speaker Notes
- Pins don’t implement
Copy
orClone
, so only one instance of each can exist. Once a pin is moved out of the port struct nobody else can take it. - Changing the configuration of a pin consumes the old pin instance, so you can’t keep use the old instance afterwards.
- The type of a value indicates the state that it is in: e.g. in this case, the configuration state of a GPIO pin. This encodes the state machine into the type system, and ensures that you don’t try to use a pin in a certain way without properly configuring it first. Illegal state transitions are caught at compile time.
- You can call
is_high
on an input pin andset_high
on an output pin, but not vice-versa. - Many HAL crates follow this pattern.
embedded-hal
The embedded-hal
crate provides a number of traits covering common microcontroller peripherals:
- GPIO
- PWM
- Delay timers
- I2C and SPI buses and devices
Similar traits for byte streams (e.g. UARTs), CAN buses and RNGs and broken out into embedded-io
, embedded-can
and rand_core
respectively.
Other crates then implement drivers in terms of these traits, e.g. an accelerometer driver might need an I2C or SPI device instance.
Speaker Notes
- The traits cover using the peripherals but not initialising or configuring them, as initialisation and configuration is usually highly platform-specific.
- There are implementations for many microcontrollers, as well as other platforms such as Linux on Raspberry Pi.
embedded-hal-async
provides async versions of the traits.embedded-hal-nb
provides another approach to non-blocking I/O, based on thenb
crate.
probe-rs
and cargo-embed
probe-rs is a handy toolset for embedded debugging, like OpenOCD but better integrated.
- SWD (Serial Wire Debug) and JTAG via CMSIS-DAP, ST-Link and J-Link probes
- GDB stub and Microsoft DAP (Debug Adapter Protocol) server
- Cargo integration
cargo-embed
is a cargo subcommand to build and flash binaries, log RTT (Real Time Transfers) output and connect GDB. It’s configured by an Embed.toml
file in your project directory.
Speaker Notes
- CMSIS-DAP is an Arm standard protocol over USB for an in-circuit debugger to access the CoreSight Debug Access Port of various Arm Cortex processors. It’s what the on-board debugger on the BBC micro:bit uses.
- ST-Link is a range of in-circuit debuggers from ST Microelectronics, J-Link is a range from SEGGER.
- The Debug Access Port is usually either a 5-pin JTAG interface or 2-pin Serial Wire Debug.
- probe-rs is a library which you can integrate into your own tools if you want to.
- The Microsoft Debug Adapter Protocol lets VSCode and other IDEs debug code running on any supported microcontroller.
- cargo-embed is a binary built using the probe-rs library.
- RTT (Real Time Transfers) is a mechanism to transfer data between the debug host and the target through a number of ringbuffers.
Debugging
Embed.toml:
[default.general]
chip = "nrf52833_xxAA"
[debug.gdb]
enabled = true
In one terminal under src/bare-metal/microcontrollers/examples/
:
cargo embed --bin board_support debug
In another terminal in the same directory:
On gLinux or Debian:
gdb-multiarch target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1337"
On MacOS:
arm-none-eabi-gdb target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1337"
Speaker Notes
In GDB, try running:
b src/bin/board_support.rs:29
b src/bin/board_support.rs:30
b src/bin/board_support.rs:32
c
c
c
Other projects
- RTIC
- “Real-Time Interrupt-driven Concurrency”
- Shared resource management, message passing, task scheduling, timer queue
- Embassy
async
executors with priorities, timers, networking, USB
- TockOS
- Security-focused RTOS with preemptive scheduling and Memory Protection Unit support
- Hubris
- Microkernel RTOS from Oxide Computer Company with memory protection, unprivileged drivers, IPC
- Bindings for FreeRTOS
- Some platforms have
std
implementations, e.g. esp-idf.
Speaker Notes
- RTIC can be considered either an RTOS or a concurrency framework.
- It doesn’t include any HALs.
- It uses the Cortex-M NVIC (Nested Virtual Interrupt Controller) for scheduling rather than a proper kernel.
- Cortex-M only.
- Google uses TockOS on the Haven microcontroller for Titan security keys.
- FreeRTOS is mostly written in C, but there are Rust bindings for writing applications.
Exercises
We will read the direction from an I2C compass, and log the readings to a serial port.
Speaker Notes
After looking at the exercises, you can look at the solutions provided.
Compass
We will read the direction from an I2C compass, and log the readings to a serial port. If you have time, try displaying it on the LEDs somehow too, or use the buttons somehow.
Hints:
- Check the documentation for the
lsm303agr
andmicrobit-v2
crates, as well as the micro:bit hardware. - The LSM303AGR Inertial Measurement Unit is connected to the internal I2C bus.
- TWI is another name for I2C, so the I2C master peripheral is called TWIM.
- The LSM303AGR driver needs something implementing the
embedded_hal::blocking::i2c::WriteRead
trait. Themicrobit::hal::Twim
struct implements this. - You have a
microbit::Board
struct with fields for the various pins and peripherals. - You can also look at the nRF52833 datasheet if you want, but it shouldn’t be necessary for this exercise.
Download the exercise template and look in the compass
directory for the following files.
src/main.rs:
#![no_main]
#![no_std]
extern crate panic_halt as _;
use core::fmt::Write;
use cortex_m_rt::entry;
use microbit::{hal::uarte::{Baudrate, Parity, Uarte}, Board};
#[entry]
fn main() -> ! {
let mut board = Board::take().unwrap();
// Configure serial port.
let mut serial = Uarte::new(
board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,
);
// Use the system timer as a delay provider.
let mut delay = Delay::new(board.SYST);
// Set up the I2C controller and Inertial Measurement Unit.
// TODO
writeln!(serial, "Ready.").unwrap();
loop {
// Read compass data and log it to the serial port.
// TODO
}
}
Cargo.toml (you shouldn’t need to change this):
[workspace]
[package]
name = "compass"
version = "0.1.0"
edition = "2021"
publish = false
[dependencies]
cortex-m-rt = "0.7.4"
embedded-hal = "1.0.0"
lsm303agr = "1.0.0"
microbit-v2 = "0.14.0"
panic-halt = "0.2.0"
Embed.toml (you shouldn’t need to change this):
[default.general]
chip = "nrf52833_xxAA"
[debug.gdb]
enabled = true
[debug.reset]
halt_afterwards = true
.cargo/config.toml (you shouldn’t need to change this):
[build]
target = "thumbv7em-none-eabihf" # Cortex-M4F
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
rustflags = ["-C", "link-arg=-Tlink.x"]
See the serial output on Linux with:
picocom --baud 115200 --imap lfcrlf /dev/ttyACM0
Or on Mac OS something like (the device name may be slightly different):
picocom --baud 115200 --imap lfcrlf /dev/tty.usbmodem14502
Use Ctrl+A Ctrl+Q to quit picocom.
Bare Metal Rust Morning Exercise
Compass
#![no_main]
#![no_std]
extern crate panic_halt as _;
use core::fmt::Write;
use cortex_m_rt::entry;
use core::cmp::{max, min};
use embedded_hal::digital::InputPin;
use lsm303agr::{
AccelMode, AccelOutputDataRate, Lsm303agr, MagMode, MagOutputDataRate,
};
use microbit::display::blocking::Display;
use microbit::hal::twim::Twim;
use microbit::hal::uarte::{Baudrate, Parity, Uarte};
use microbit::hal::{Delay, Timer};
use microbit::pac::twim0::frequency::FREQUENCY_A;
use microbit::Board;
const COMPASS_SCALE: i32 = 30000;
const ACCELEROMETER_SCALE: i32 = 700;
#[entry]
fn main() -> ! {
let mut board = Board::take().unwrap();
// Configure serial port.
let mut serial = Uarte::new(
board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,
);
// Use the system timer as a delay provider.
let mut delay = Delay::new(board.SYST);
// Set up the I2C controller and Inertial Measurement Unit.
writeln!(serial, "Setting up IMU...").unwrap();
let i2c = Twim::new(board.TWIM0, board.i2c_internal.into(), FREQUENCY_A::K100);
let mut imu = Lsm303agr::new_with_i2c(i2c);
imu.init().unwrap();
imu.set_mag_mode_and_odr(
&mut delay,
MagMode::HighResolution,
MagOutputDataRate::Hz50,
)
.unwrap();
imu.set_accel_mode_and_odr(
&mut delay,
AccelMode::Normal,
AccelOutputDataRate::Hz50,
)
.unwrap();
let mut imu = imu.into_mag_continuous().ok().unwrap();
// Set up display and timer.
let mut timer = Timer::new(board.TIMER0);
let mut display = Display::new(board.display_pins);
let mut mode = Mode::Compass;
let mut button_pressed = false;
writeln!(serial, "Ready.").unwrap();
loop {
// Read compass data and log it to the serial port.
while !(imu.mag_status().unwrap().xyz_new_data()
&& imu.accel_status().unwrap().xyz_new_data())
{}
let compass_reading = imu.magnetic_field().unwrap();
let accelerometer_reading = imu.acceleration().unwrap();
writeln!(
serial,
"{},{},{}\t{},{},{}",
compass_reading.x_nt(),
compass_reading.y_nt(),
compass_reading.z_nt(),
accelerometer_reading.x_mg(),
accelerometer_reading.y_mg(),
accelerometer_reading.z_mg(),
)
.unwrap();
let mut image = [[0; 5]; 5];
let (x, y) = match mode {
Mode::Compass => (
scale(-compass_reading.x_nt(), -COMPASS_SCALE, COMPASS_SCALE, 0, 4)
as usize,
scale(compass_reading.y_nt(), -COMPASS_SCALE, COMPASS_SCALE, 0, 4)
as usize,
),
Mode::Accelerometer => (
scale(
accelerometer_reading.x_mg(),
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,
) as usize,
scale(
-accelerometer_reading.y_mg(),
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,
) as usize,
),
};
image[y][x] = 255;
display.show(&mut timer, image, 100);
// If button A is pressed, switch to the next mode and briefly blink all LEDs
// on.
if board.buttons.button_a.is_low().unwrap() {
if !button_pressed {
mode = mode.next();
display.show(&mut timer, [[255; 5]; 5], 200);
}
button_pressed = true;
} else {
button_pressed = false;
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Mode {
Compass,
Accelerometer,
}
impl Mode {
fn next(self) -> Self {
match self {
Self::Compass => Self::Accelerometer,
Self::Accelerometer => Self::Compass,
}
}
}
fn scale(value: i32, min_in: i32, max_in: i32, min_out: i32, max_out: i32) -> i32 {
let range_in = max_in - min_in;
let range_out = max_out - min_out;
cap(min_out + range_out * (value - min_in) / range_in, min_out, max_out)
}
fn cap(value: i32, min_value: i32, max_value: i32) -> i32 {
max(min_value, min(value, max_value))
}
Application processors
So far we’ve talked about microcontrollers, such as the Arm Cortex-M series. Now let’s try writing something for Cortex-A. For simplicity we’ll just work with QEMU’s aarch64 ‘virt’ board.
Speaker Notes
- Broadly speaking, microcontrollers don’t have an MMU or multiple levels of privilege (exception levels on Arm CPUs, rings on x86), while application processors do.
- QEMU supports emulating various different machines or board models for each architecture. The ‘virt’ board doesn’t correspond to any particular real hardware, but is designed purely for virtual machines.
Getting Ready to Rust
Before we can start running Rust code, we need to do some initialisation.
.section .init.entry, "ax"
.global entry
entry:
/*
* Load and apply the memory management configuration, ready to enable MMU and
* caches.
*/
adrp x30, idmap
msr ttbr0_el1, x30
mov_i x30, .Lmairval
msr mair_el1, x30
mov_i x30, .Ltcrval
/* Copy the supported PA range into TCR_EL1.IPS. */
mrs x29, id_aa64mmfr0_el1
bfi x30, x29, #32, #4
msr tcr_el1, x30
mov_i x30, .Lsctlrval
/*
* Ensure everything before this point has completed, then invalidate any
* potentially stale local TLB entries before they start being used.
*/
isb
tlbi vmalle1
ic iallu
dsb nsh
isb
/*
* Configure sctlr_el1 to enable MMU and cache and don't proceed until this
* has completed.
*/
msr sctlr_el1, x30
isb
/* Disable trapping floating point access in EL1. */
mrs x30, cpacr_el1
orr x30, x30, #(0x3 << 20)
msr cpacr_el1, x30
isb
/* Zero out the bss section. */
adr_l x29, bss_begin
adr_l x30, bss_end
0: cmp x29, x30
b.hs 1f
stp xzr, xzr, [x29], #16
b 0b
1: /* Prepare the stack. */
adr_l x30, boot_stack_end
mov sp, x30
/* Set up exception vector. */
adr x30, vector_table_el1
msr vbar_el1, x30
/* Call into Rust code. */
bl main
/* Loop forever waiting for interrupts. */
2: wfi
b 2b
Speaker Notes
- This is the same as it would be for C: initialising the processor state, zeroing the BSS, and setting up the stack pointer.
- The BSS (block starting symbol, for historical reasons) is the part of the object file which containing statically allocated variables which are initialised to zero. They are omitted from the image, to avoid wasting space on zeroes. The compiler assumes that the loader will take care of zeroing them.
- The BSS may already be zeroed, depending on how memory is initialised and the image is loaded, but we zero it to be sure.
- We need to enable the MMU and cache before reading or writing any memory. If we don’t:
- Unaligned accesses will fault. We build the Rust code for the
aarch64-unknown-none
target which sets+strict-align
to prevent the compiler generating unaligned accesses, so it should be fine in this case, but this is not necessarily the case in general. - If it were running in a VM, this can lead to cache coherency issues. The problem is that the VM is accessing memory directly with the cache disabled, while the host has cacheable aliases to the same memory. Even if the host doesn’t explicitly access the memory, speculative accesses can lead to cache fills, and then changes from one or the other will get lost when the cache is cleaned or the VM enables the cache. (Cache is keyed by physical address, not VA or IPA.)
- Unaligned accesses will fault. We build the Rust code for the
- For simplicity, we just use a hardcoded pagetable (see
idmap.S
) which identity maps the first 1 GiB of address space for devices, the next 1 GiB for DRAM, and another 1 GiB higher up for more devices. This matches the memory layout that QEMU uses. - We also set up the exception vector (
vbar_el1
), which we’ll see more about later. - All examples this afternoon assume we will be running at exception level 1 (EL1). If you need to run at a different exception level you’ll need to modify
entry.S
accordingly.
Inline assembly
Sometimes we need to use assembly to do things that aren’t possible with Rust code. For example, to make an HVC (hypervisor call) to tell the firmware to power off the system:
(If you actually want to do this, use the smccc
crate which has wrappers for all these functions.)
Speaker Notes
- PSCI is the Arm Power State Coordination Interface, a standard set of functions to manage system and CPU power states, among other things. It is implemented by EL3 firmware and hypervisors on many systems.
- The
0 => _
syntax means initialise the register to 0 before running the inline assembly code, and ignore its contents afterwards. We need to useinout
rather thanin
because the call could potentially clobber the contents of the registers. - This
main
function needs to be#[no_mangle]
andextern "C"
because it is called from our entry point inentry.S
. _x0
–_x3
are the values of registersx0
–x3
, which are conventionally used by the bootloader to pass things like a pointer to the device tree. According to the standard aarch64 calling convention (which is whatextern "C"
specifies to use), registersx0
–x7
are used for the first 8 arguments passed to a function, soentry.S
doesn’t need to do anything special except make sure it doesn’t change these registers.- Run the example in QEMU with
make qemu_psci
undersrc/bare-metal/aps/examples
.
Volatile memory access for MMIO
- Use
pointer::read_volatile
andpointer::write_volatile
. - Never hold a reference.
addr_of!
lets you get fields of structs without creating an intermediate reference.
Speaker Notes
- Volatile access: read or write operations may have side-effects, so prevent the compiler or hardware from reordering, duplicating or eliding them.
- Usually if you write and then read, e.g. via a mutable reference, the compiler may assume that the value read is the same as the value just written, and not bother actually reading memory.
- Some existing crates for volatile access to hardware do hold references, but this is unsound. Whenever a reference exist, the compiler may choose to dereference it.
- Use the
addr_of!
macro to get struct field pointers from a pointer to the struct.
Let’s write a UART driver
The QEMU ‘virt’ machine has a PL011 UART, so let’s write a driver for that.
Speaker Notes
- Note that
Uart::new
is unsafe while the other methods are safe. This is because as long as the caller ofUart::new
guarantees that its safety requirements are met (i.e. that there is only ever one instance of the driver for a given UART, and nothing else aliasing its address space), then it is always safe to callwrite_byte
later because we can assume the necessary preconditions. - We could have done it the other way around (making
new
safe butwrite_byte
unsafe), but that would be much less convenient to use as every place that callswrite_byte
would need to reason about the safety - This is a common pattern for writing safe wrappers of unsafe code: moving the burden of proof for soundness from a large number of places to a smaller number of places.
More traits
We derived the Debug
trait. It would be useful to implement a few more traits too.
Speaker Notes
- Implementing
Write
lets us use thewrite!
andwriteln!
macros with ourUart
type. - Run the example in QEMU with
make qemu_minimal
undersrc/bare-metal/aps/examples
.
A better UART driver
The PL011 actually has a bunch more registers, and adding offsets to construct pointers to access them is error-prone and hard to read. Plus, some of them are bit fields which would be nice to access in a structured way.
Offset | Register name | Width |
---|---|---|
0x00 | DR | 12 |
0x04 | RSR | 4 |
0x18 | FR | 9 |
0x20 | ILPR | 8 |
0x24 | IBRD | 16 |
0x28 | FBRD | 6 |
0x2c | LCR_H | 8 |
0x30 | CR | 16 |
0x34 | IFLS | 6 |
0x38 | IMSC | 11 |
0x3c | RIS | 11 |
0x40 | MIS | 11 |
0x44 | ICR | 11 |
0x48 | DMACR | 3 |
Speaker Notes
- There are also some ID registers which have been omitted for brevity.
Bitflags
The bitflags
crate is useful for working with bitflags.
Speaker Notes
- The
bitflags!
macro creates a newtype something likeFlags(u16)
, along with a bunch of method implementations to get and set flags.
Multiple registers
We can use a struct to represent the memory layout of the UART’s registers.
Speaker Notes
#[repr(C)]
tells the compiler to lay the struct fields out in order, following the same rules as C. This is necessary for our struct to have a predictable layout, as default Rust representation allows the compiler to (among other things) reorder fields however it sees fit.
Driver
Now let’s use the new Registers
struct in our driver.
Speaker Notes
- Note the use of
addr_of!
/addr_of_mut!
to get pointers to individual fields without creating an intermediate reference, which would be unsound.
Using it
Let’s write a small program using our driver to write to the serial console, and echo incoming bytes.
Speaker Notes
- As in the inline assembly example, this
main
function is called from our entry point code inentry.S
. See the speaker notes there for details. - Run the example in QEMU with
make qemu
undersrc/bare-metal/aps/examples
.
Logging
It would be nice to be able to use the logging macros from the log
crate. We can do this by implementing the Log
trait.
Speaker Notes
- The unwrap in
log
is safe because we initialiseLOGGER
before callingset_logger
.
Using it
We need to initialise the logger before we use it.
Speaker Notes
- Note that our panic handler can now log details of panics.
- Run the example in QEMU with
make qemu_logger
undersrc/bare-metal/aps/examples
.
Exceptions
AArch64 defines an exception vector table with 16 entries, for 4 types of exceptions (synchronous, IRQ, FIQ, SError) from 4 states (current EL with SP0, current EL with SPx, lower EL using AArch64, lower EL using AArch32). We implement this in assembly to save volatile registers to the stack before calling into Rust code:
Speaker Notes
- EL is exception level; all our examples this afternoon run in EL1.
- For simplicity we aren’t distinguishing between SP0 and SPx for the current EL exceptions, or between AArch32 and AArch64 for the lower EL exceptions.
- For this example we just log the exception and power down, as we don’t expect any of them to actually happen.
- We can think of exception handlers and our main execution context more or less like different threads.
Send
andSync
will control what we can share between them, just like with threads. For example, if we want to share some value between exception handlers and the rest of the program, and it’sSend
but notSync
, then we’ll need to wrap it in something like aMutex
and put it in a static.
Other projects
- oreboot
- “coreboot without the C”
- Supports x86, aarch64 and RISC-V.
- Relies on LinuxBoot rather than having many drivers itself.
- Rust RaspberryPi OS tutorial
- Initialisation, UART driver, simple bootloader, JTAG, exception levels, exception handling, page tables
- Some dodginess around cache maintenance and initialisation in Rust, not necessarily a good example to copy for production code.
cargo-call-stack
- Static analysis to determine maximum stack usage.
Speaker Notes
- The RaspberryPi OS tutorial runs Rust code before the MMU and caches are enabled. This will read and write memory (e.g. the stack). However:
- Without the MMU and cache, unaligned accesses will fault. It builds with
aarch64-unknown-none
which sets+strict-align
to prevent the compiler generating unaligned accesses so it should be alright, but this is not necessarily the case in general. - If it were running in a VM, this can lead to cache coherency issues. The problem is that the VM is accessing memory directly with the cache disabled, while the host has cacheable aliases to the same memory. Even if the host doesn’t explicitly access the memory, speculative accesses can lead to cache fills, and then changes from one or the other will get lost. Again this is alright in this particular case (running directly on the hardware with no hypervisor), but isn’t a good pattern in general.
- Without the MMU and cache, unaligned accesses will fault. It builds with
Useful crates
We’ll go over a few crates which solve some common problems in bare-metal programming.
zerocopy
The zerocopy
crate (from Fuchsia) provides traits and macros for safely converting between byte sequences and other types.
This is not suitable for MMIO (as it doesn’t use volatile reads and writes), but can be useful for working with structures shared with hardware e.g. by DMA, or sent over some external interface.
Speaker Notes
FromBytes
can be implemented for types for which any byte pattern is valid, and so can safely be converted from an untrusted sequence of bytes.- Attempting to derive
FromBytes
for these types would fail, becauseRequestType
doesn’t use all possible u32 values as discriminants, so not all byte patterns are valid. zerocopy::byteorder
has types for byte-order aware numeric primitives.- Run the example with
cargo run
undersrc/bare-metal/useful-crates/zerocopy-example/
. (It won’t run in the Playground because of the crate dependency.)
aarch64-paging
The aarch64-paging
crate lets you create page tables according to the AArch64 Virtual Memory System Architecture.
Speaker Notes
- For now it only supports EL1, but support for other exception levels should be straightforward to add.
- This is used in Android for the Protected VM Firmware.
- There’s no easy way to run this example, as it needs to run on real hardware or under QEMU.
buddy_system_allocator
buddy_system_allocator
is a third-party crate implementing a basic buddy system allocator. It can be used both for LockedHeap
implementing GlobalAlloc
so you can use the standard alloc
crate (as we saw before), or for allocating other address space. For example, we might want to allocate MMIO space for PCI BARs:
Speaker Notes
- PCI BARs always have alignment equal to their size.
- Run the example with
cargo run
undersrc/bare-metal/useful-crates/allocator-example/
. (It won’t run in the Playground because of the crate dependency.)
tinyvec
Sometimes you want something which can be resized like a Vec
, but without heap allocation. tinyvec
provides this: a vector backed by an array or slice, which could be statically allocated or on the stack, which keeps track of how many elements are used and panics if you try to use more than are allocated.
Speaker Notes
tinyvec
requires that the element type implementDefault
for initialisation.- The Rust Playground includes
tinyvec
, so this example will run fine inline.
spin
std::sync::Mutex
and the other synchronisation primitives from std::sync
are not available in core
or alloc
. How can we manage synchronisation or interior mutability, such as for sharing state between different CPUs?
The spin
crate provides spinlock-based equivalents of many of these primitives.
Speaker Notes
- Be careful to avoid deadlock if you take locks in interrupt handlers.
spin
also has a ticket lock mutex implementation; equivalents ofRwLock
,Barrier
andOnce
fromstd::sync
; andLazy
for lazy initialisation.- The
once_cell
crate also has some useful types for late initialisation with a slightly different approach tospin::once::Once
. - The Rust Playground includes
spin
, so this example will run fine inline.
Android
To build a bare-metal Rust binary in AOSP, you need to use a rust_ffi_static
Soong rule to build your Rust code, then a cc_binary
with a linker script to produce the binary itself, and then a raw_binary
to convert the ELF to a raw binary ready to be run.
rust_ffi_static {
name: "libvmbase_example",
defaults: ["vmbase_ffi_defaults"],
crate_name: "vmbase_example",
srcs: ["src/main.rs"],
rustlibs: [
"libvmbase",
],
}
cc_binary {
name: "vmbase_example",
defaults: ["vmbase_elf_defaults"],
srcs: [
"idmap.S",
],
static_libs: [
"libvmbase_example",
],
linker_scripts: [
"image.ld",
":vmbase_sections",
],
}
raw_binary {
name: "vmbase_example_bin",
stem: "vmbase_example.bin",
src: ":vmbase_example",
enabled: false,
target: {
android_arm64: {
enabled: true,
},
},
}
vmbase
For VMs running under crosvm on aarch64, the vmbase library provides a linker script and useful defaults for the build rules, along with an entry point, UART console logging and more.
#![no_main]
#![no_std]
use vmbase::{main, println};
main!(main);
pub fn main(arg0: u64, arg1: u64, arg2: u64, arg3: u64) {
println!("Hello world");
}
Speaker Notes
- The
main!
macro marks your main function, to be called from thevmbase
entry point. - The
vmbase
entry point handles console initialisation, and issues a PSCI_SYSTEM_OFF to shutdown the VM if your main function returns.
Exercises
We will write a driver for the PL031 real-time clock device.
Speaker Notes
After looking at the exercises, you can look at the solutions provided.
RTC driver
The QEMU aarch64 virt machine has a PL031 real-time clock at 0x9010000. For this exercise, you should write a driver for it.
- Use it to print the current time to the serial console. You can use the
chrono
crate for date/time formatting. - Use the match register and raw interrupt status to busy-wait until a given time, e.g. 3 seconds in the future. (Call
core::hint::spin_loop
inside the loop.) - Extension if you have time: Enable and handle the interrupt generated by the RTC match. You can use the driver provided in the
arm-gic
crate to configure the Arm Generic Interrupt Controller.- Use the RTC interrupt, which is wired to the GIC as
IntId::spi(2)
. - Once the interrupt is enabled, you can put the core to sleep via
arm_gic::wfi()
, which will cause the core to sleep until it receives an interrupt.
- Use the RTC interrupt, which is wired to the GIC as
Download the exercise template and look in the rtc
directory for the following files.
src/main.rs:
#![no_main]
#![no_std]
mod exceptions;
mod logger;
mod pl011;
use crate::pl011::Uart;
use arm_gic::gicv3::GicV3;
use core::panic::PanicInfo;
use log::{error, info, trace, LevelFilter};
use smccc::psci::system_off;
use smccc::Hvc;
/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;
const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;
/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;
#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {
// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };
logger::init(uart, LevelFilter::Trace).unwrap();
info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);
// SAFETY: `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.
let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, GICR_BASE_ADDRESS) };
gic.setup();
// TODO: Create instance of RTC driver and print current time.
// TODO: Wait for 3 seconds.
system_off::<Hvc>().unwrap();
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
error!("{info}");
system_off::<Hvc>().unwrap();
loop {}
}
src/exceptions.rs (you should only need to change this for the 3rd part of the exercise):
src/logger.rs (you shouldn’t need to change this):
src/pl011.rs (you shouldn’t need to change this):
Cargo.toml (you shouldn’t need to change this):
[workspace]
[package]
name = "rtc"
version = "0.1.0"
edition = "2021"
publish = false
[dependencies]
arm-gic = "0.1.0"
bitflags = "2.5.0"
chrono = { version = "0.4.38", default-features = false }
log = "0.4.21"
smccc = "0.1.1"
spin = "0.9.8"
[build-dependencies]
cc = "1.0.98"
build.rs (you shouldn’t need to change this):
// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use cc::Build;
use std::env;
fn main() {
#[cfg(target_os = "linux")]
env::set_var("CROSS_COMPILE", "aarch64-linux-gnu");
#[cfg(not(target_os = "linux"))]
env::set_var("CROSS_COMPILE", "aarch64-none-elf");
Build::new()
.file("entry.S")
.file("exceptions.S")
.file("idmap.S")
.compile("empty")
}
entry.S (you shouldn’t need to change this):
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
.macro adr_l, reg:req, sym:req
adrp \reg, \sym
add \reg, \reg, :lo12:\sym
.endm
.macro mov_i, reg:req, imm:req
movz \reg, :abs_g3:\imm
movk \reg, :abs_g2_nc:\imm
movk \reg, :abs_g1_nc:\imm
movk \reg, :abs_g0_nc:\imm
.endm
.set .L_MAIR_DEV_nGnRE, 0x04
.set .L_MAIR_MEM_WBWA, 0xff
.set .Lmairval, .L_MAIR_DEV_nGnRE | (.L_MAIR_MEM_WBWA << 8)
/* 4 KiB granule size for TTBR0_EL1. */
.set .L_TCR_TG0_4KB, 0x0 << 14
/* 4 KiB granule size for TTBR1_EL1. */
.set .L_TCR_TG1_4KB, 0x2 << 30
/* Disable translation table walk for TTBR1_EL1, generating a translation fault instead. */
.set .L_TCR_EPD1, 0x1 << 23
/* Translation table walks for TTBR0_EL1 are inner sharable. */
.set .L_TCR_SH_INNER, 0x3 << 12
/*
* Translation table walks for TTBR0_EL1 are outer write-back read-allocate write-allocate
* cacheable.
*/
.set .L_TCR_RGN_OWB, 0x1 << 10
/*
* Translation table walks for TTBR0_EL1 are inner write-back read-allocate write-allocate
* cacheable.
*/
.set .L_TCR_RGN_IWB, 0x1 << 8
/* Size offset for TTBR0_EL1 is 2**39 bytes (512 GiB). */
.set .L_TCR_T0SZ_512, 64 - 39
.set .Ltcrval, .L_TCR_TG0_4KB | .L_TCR_TG1_4KB | .L_TCR_EPD1 | .L_TCR_RGN_OWB
.set .Ltcrval, .Ltcrval | .L_TCR_RGN_IWB | .L_TCR_SH_INNER | .L_TCR_T0SZ_512
/* Stage 1 instruction access cacheability is unaffected. */
.set .L_SCTLR_ELx_I, 0x1 << 12
/* SP alignment fault if SP is not aligned to a 16 byte boundary. */
.set .L_SCTLR_ELx_SA, 0x1 << 3
/* Stage 1 data access cacheability is unaffected. */
.set .L_SCTLR_ELx_C, 0x1 << 2
/* EL0 and EL1 stage 1 MMU enabled. */
.set .L_SCTLR_ELx_M, 0x1 << 0
/* Privileged Access Never is unchanged on taking an exception to EL1. */
.set .L_SCTLR_EL1_SPAN, 0x1 << 23
/* SETEND instruction disabled at EL0 in aarch32 mode. */
.set .L_SCTLR_EL1_SED, 0x1 << 8
/* Various IT instructions are disabled at EL0 in aarch32 mode. */
.set .L_SCTLR_EL1_ITD, 0x1 << 7
.set .L_SCTLR_EL1_RES1, (0x1 << 11) | (0x1 << 20) | (0x1 << 22) | (0x1 << 28) | (0x1 << 29)
.set .Lsctlrval, .L_SCTLR_ELx_M | .L_SCTLR_ELx_C | .L_SCTLR_ELx_SA | .L_SCTLR_EL1_ITD | .L_SCTLR_EL1_SED
.set .Lsctlrval, .Lsctlrval | .L_SCTLR_ELx_I | .L_SCTLR_EL1_SPAN | .L_SCTLR_EL1_RES1
/**
* This is a generic entry point for an image. It carries out the operations required to prepare the
* loaded image to be run. Specifically, it zeroes the bss section using registers x25 and above,
* prepares the stack, enables floating point, and sets up the exception vector. It preserves x0-x3
* for the Rust entry point, as these may contain boot parameters.
*/
.section .init.entry, "ax"
.global entry
entry:
/* Load and apply the memory management configuration, ready to enable MMU and caches. */
adrp x30, idmap
msr ttbr0_el1, x30
mov_i x30, .Lmairval
msr mair_el1, x30
mov_i x30, .Ltcrval
/* Copy the supported PA range into TCR_EL1.IPS. */
mrs x29, id_aa64mmfr0_el1
bfi x30, x29, #32, #4
msr tcr_el1, x30
mov_i x30, .Lsctlrval
/*
* Ensure everything before this point has completed, then invalidate any potentially stale
* local TLB entries before they start being used.
*/
isb
tlbi vmalle1
ic iallu
dsb nsh
isb
/*
* Configure sctlr_el1 to enable MMU and cache and don't proceed until this has completed.
*/
msr sctlr_el1, x30
isb
/* Disable trapping floating point access in EL1. */
mrs x30, cpacr_el1
orr x30, x30, #(0x3 << 20)
msr cpacr_el1, x30
isb
/* Zero out the bss section. */
adr_l x29, bss_begin
adr_l x30, bss_end
0: cmp x29, x30
b.hs 1f
stp xzr, xzr, [x29], #16
b 0b
1: /* Prepare the stack. */
adr_l x30, boot_stack_end
mov sp, x30
/* Set up exception vector. */
adr x30, vector_table_el1
msr vbar_el1, x30
/* Call into Rust code. */
bl main
/* Loop forever waiting for interrupts. */
2: wfi
b 2b
exceptions.S (you shouldn’t need to change this):
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Saves the volatile registers onto the stack. This currently takes 14
* instructions, so it can be used in exception handlers with 18 instructions
* left.
*
* On return, x0 and x1 are initialised to elr_el2 and spsr_el2 respectively,
* which can be used as the first and second arguments of a subsequent call.
*/
.macro save_volatile_to_stack
/* Reserve stack space and save registers x0-x18, x29 & x30. */
stp x0, x1, [sp, #-(8 * 24)]!
stp x2, x3, [sp, #8 * 2]
stp x4, x5, [sp, #8 * 4]
stp x6, x7, [sp, #8 * 6]
stp x8, x9, [sp, #8 * 8]
stp x10, x11, [sp, #8 * 10]
stp x12, x13, [sp, #8 * 12]
stp x14, x15, [sp, #8 * 14]
stp x16, x17, [sp, #8 * 16]
str x18, [sp, #8 * 18]
stp x29, x30, [sp, #8 * 20]
/*
* Save elr_el1 & spsr_el1. This such that we can take nested exception
* and still be able to unwind.
*/
mrs x0, elr_el1
mrs x1, spsr_el1
stp x0, x1, [sp, #8 * 22]
.endm
/**
* Restores the volatile registers from the stack. This currently takes 14
* instructions, so it can be used in exception handlers while still leaving 18
* instructions left; if paired with save_volatile_to_stack, there are 4
* instructions to spare.
*/
.macro restore_volatile_from_stack
/* Restore registers x2-x18, x29 & x30. */
ldp x2, x3, [sp, #8 * 2]
ldp x4, x5, [sp, #8 * 4]
ldp x6, x7, [sp, #8 * 6]
ldp x8, x9, [sp, #8 * 8]
ldp x10, x11, [sp, #8 * 10]
ldp x12, x13, [sp, #8 * 12]
ldp x14, x15, [sp, #8 * 14]
ldp x16, x17, [sp, #8 * 16]
ldr x18, [sp, #8 * 18]
ldp x29, x30, [sp, #8 * 20]
/* Restore registers elr_el1 & spsr_el1, using x0 & x1 as scratch. */
ldp x0, x1, [sp, #8 * 22]
msr elr_el1, x0
msr spsr_el1, x1
/* Restore x0 & x1, and release stack space. */
ldp x0, x1, [sp], #8 * 24
.endm
/**
* This is a generic handler for exceptions taken at the current EL while using
* SP0. It behaves similarly to the SPx case by first switching to SPx, doing
* the work, then switching back to SP0 before returning.
*
* Switching to SPx and calling the Rust handler takes 16 instructions. To
* restore and return we need an additional 16 instructions, so we can implement
* the whole handler within the allotted 32 instructions.
*/
.macro current_exception_sp0 handler:req
msr spsel, #1
save_volatile_to_stack
bl \handler
restore_volatile_from_stack
msr spsel, #0
eret
.endm
/**
* This is a generic handler for exceptions taken at the current EL while using
* SPx. It saves volatile registers, calls the Rust handler, restores volatile
* registers, then returns.
*
* This also works for exceptions taken from EL0, if we don't care about
* non-volatile registers.
*
* Saving state and jumping to the Rust handler takes 15 instructions, and
* restoring and returning also takes 15 instructions, so we can fit the whole
* handler in 30 instructions, under the limit of 32.
*/
.macro current_exception_spx handler:req
save_volatile_to_stack
bl \handler
restore_volatile_from_stack
eret
.endm
.section .text.vector_table_el1, "ax"
.global vector_table_el1
.balign 0x800
vector_table_el1:
sync_cur_sp0:
current_exception_sp0 sync_exception_current
.balign 0x80
irq_cur_sp0:
current_exception_sp0 irq_current
.balign 0x80
fiq_cur_sp0:
current_exception_sp0 fiq_current
.balign 0x80
serr_cur_sp0:
current_exception_sp0 serr_current
.balign 0x80
sync_cur_spx:
current_exception_spx sync_exception_current
.balign 0x80
irq_cur_spx:
current_exception_spx irq_current
.balign 0x80
fiq_cur_spx:
current_exception_spx fiq_current
.balign 0x80
serr_cur_spx:
current_exception_spx serr_current
.balign 0x80
sync_lower_64:
current_exception_spx sync_lower
.balign 0x80
irq_lower_64:
current_exception_spx irq_lower
.balign 0x80
fiq_lower_64:
current_exception_spx fiq_lower
.balign 0x80
serr_lower_64:
current_exception_spx serr_lower
.balign 0x80
sync_lower_32:
current_exception_spx sync_lower
.balign 0x80
irq_lower_32:
current_exception_spx irq_lower
.balign 0x80
fiq_lower_32:
current_exception_spx fiq_lower
.balign 0x80
serr_lower_32:
current_exception_spx serr_lower
idmap.S (you shouldn’t need to change this):
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
.set .L_TT_TYPE_BLOCK, 0x1
.set .L_TT_TYPE_PAGE, 0x3
.set .L_TT_TYPE_TABLE, 0x3
/* Access flag. */
.set .L_TT_AF, 0x1 << 10
/* Not global. */
.set .L_TT_NG, 0x1 << 11
.set .L_TT_XN, 0x3 << 53
.set .L_TT_MT_DEV, 0x0 << 2 // MAIR #0 (DEV_nGnRE)
.set .L_TT_MT_MEM, (0x1 << 2) | (0x3 << 8) // MAIR #1 (MEM_WBWA), inner shareable
.set .L_BLOCK_DEV, .L_TT_TYPE_BLOCK | .L_TT_MT_DEV | .L_TT_AF | .L_TT_XN
.set .L_BLOCK_MEM, .L_TT_TYPE_BLOCK | .L_TT_MT_MEM | .L_TT_AF | .L_TT_NG
.section ".rodata.idmap", "a", %progbits
.global idmap
.align 12
idmap:
/* level 1 */
.quad .L_BLOCK_DEV | 0x0 // 1 GiB of device mappings
.quad .L_BLOCK_MEM | 0x40000000 // 1 GiB of DRAM
.fill 254, 8, 0x0 // 254 GiB of unmapped VA space
.quad .L_BLOCK_DEV | 0x4000000000 // 1 GiB of device mappings
.fill 255, 8, 0x0 // 255 GiB of remaining VA space
image.ld (you shouldn’t need to change this):
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Code will start running at this symbol which is placed at the start of the
* image.
*/
ENTRY(entry)
MEMORY
{
image : ORIGIN = 0x40080000, LENGTH = 2M
}
SECTIONS
{
/*
* Collect together the code.
*/
.init : ALIGN(4096) {
text_begin = .;
*(.init.entry)
*(.init.*)
} >image
.text : {
*(.text.*)
} >image
text_end = .;
/*
* Collect together read-only data.
*/
.rodata : ALIGN(4096) {
rodata_begin = .;
*(.rodata.*)
} >image
.got : {
*(.got)
} >image
rodata_end = .;
/*
* Collect together the read-write data including .bss at the end which
* will be zero'd by the entry code.
*/
.data : ALIGN(4096) {
data_begin = .;
*(.data.*)
/*
* The entry point code assumes that .data is a multiple of 32
* bytes long.
*/
. = ALIGN(32);
data_end = .;
} >image
/* Everything beyond this point will not be included in the binary. */
bin_end = .;
/* The entry point code assumes that .bss is 16-byte aligned. */
.bss : ALIGN(16) {
bss_begin = .;
*(.bss.*)
*(COMMON)
. = ALIGN(16);
bss_end = .;
} >image
.stack (NOLOAD) : ALIGN(4096) {
boot_stack_begin = .;
. += 40 * 4096;
. = ALIGN(4096);
boot_stack_end = .;
} >image
. = ALIGN(4K);
PROVIDE(dma_region = .);
/*
* Remove unused sections from the image.
*/
/DISCARD/ : {
/* The image loads itself so doesn't need these sections. */
*(.gnu.hash)
*(.hash)
*(.interp)
*(.eh_frame_hdr)
*(.eh_frame)
*(.note.gnu.build-id)
}
}
Makefile (you shouldn’t need to change this):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
UNAME := $(shell uname -s)
ifeq ($(UNAME),Linux)
TARGET = aarch64-linux-gnu
else
TARGET = aarch64-none-elf
endif
OBJCOPY = $(TARGET)-objcopy
.PHONY: build qemu_minimal qemu qemu_logger
all: rtc.bin
build:
cargo build
rtc.bin: build
$(OBJCOPY) -O binary target/aarch64-unknown-none/debug/rtc $@
qemu: rtc.bin
qemu-system-aarch64 -machine virt,gic-version=3 -cpu max -serial mon:stdio -display none -kernel $< -s
clean:
cargo clean
rm -f *.bin
.cargo/config.toml (you shouldn’t need to change this):
[build]
target = "aarch64-unknown-none"
rustflags = ["-C", "link-arg=-Timage.ld"]
Run the code in QEMU with make qemu
.
Bare Metal Rust Afternoon
RTC driver
main.rs:
#![no_main]
#![no_std]
mod exceptions;
mod logger;
mod pl011;
mod pl031;
use crate::pl031::Rtc;
use arm_gic::gicv3::{IntId, Trigger};
use arm_gic::{irq_enable, wfi};
use chrono::{TimeZone, Utc};
use core::hint::spin_loop;
use crate::pl011::Uart;
use arm_gic::gicv3::GicV3;
use core::panic::PanicInfo;
use log::{error, info, trace, LevelFilter};
use smccc::psci::system_off;
use smccc::Hvc;
/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;
const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;
/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;
/// Base address of the PL031 RTC.
const PL031_BASE_ADDRESS: *mut u32 = 0x901_0000 as _;
/// The IRQ used by the PL031 RTC.
const PL031_IRQ: IntId = IntId::spi(2);
#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {
// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };
logger::init(uart, LevelFilter::Trace).unwrap();
info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);
// SAFETY: `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.
let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, GICR_BASE_ADDRESS) };
gic.setup();
// SAFETY: `PL031_BASE_ADDRESS` is the base address of a PL031 device, and
// nothing else accesses that address range.
let mut rtc = unsafe { Rtc::new(PL031_BASE_ADDRESS) };
let timestamp = rtc.read();
let time = Utc.timestamp_opt(timestamp.into(), 0).unwrap();
info!("RTC: {time}");
GicV3::set_priority_mask(0xff);
gic.set_interrupt_priority(PL031_IRQ, 0x80);
gic.set_trigger(PL031_IRQ, Trigger::Level);
irq_enable();
gic.enable_interrupt(PL031_IRQ, true);
// Wait for 3 seconds, without interrupts.
let target = timestamp + 3;
rtc.set_match(target);
info!("Waiting for {}", Utc.timestamp_opt(target.into(), 0).unwrap());
trace!(
"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()
);
while !rtc.matched() {
spin_loop();
}
trace!(
"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()
);
info!("Finished waiting");
// Wait another 3 seconds for an interrupt.
let target = timestamp + 6;
info!("Waiting for {}", Utc.timestamp_opt(target.into(), 0).unwrap());
rtc.set_match(target);
rtc.clear_interrupt();
rtc.enable_interrupt(true);
trace!(
"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()
);
while !rtc.interrupt_pending() {
wfi();
}
trace!(
"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()
);
info!("Finished waiting");
system_off::<Hvc>().unwrap();
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
error!("{info}");
system_off::<Hvc>().unwrap();
loop {}
}
pl031.rs:
Welcome to Concurrency in Rust
Rust has full support for concurrency using OS threads with mutexes and channels.
The Rust type system plays an important role in making many concurrency bugs compile time bugs. This is often referred to as fearless concurrency since you can rely on the compiler to ensure correctness at runtime.
Mục lục
Buổi học nên kéo dài khoảng 3 tiếng và 20 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Threads | 30 minutes |
Channels | 20 minutes |
Send and Sync | 15 minutes |
Shared State | 30 minutes |
Exercises | 1 hour and 10 minutes |
Speaker Notes
- Rust lets us access OS concurrency toolkit: threads, sync. primitives, etc.
- The type system gives us safety for concurrency without any special features.
- The same tools that help with “concurrent” access in a single thread (e.g., a called function that might mutate an argument or save references to it to read later) save us from multi-threading issues.
Threads
Phần này sẽ kéo dài khoảng 30 phút, bao gồm:
Slide | Thời lượng |
---|---|
Plain Threads | 15 minutes |
Scoped Threads | 15 minutes |
Plain Threads
Rust threads work similarly to threads in other languages:
- Threads are all daemon threads, the main thread does not wait for them.
- Thread panics are independent of each other.
- Panics can carry a payload, which can be unpacked with
downcast_ref
.
- Panics can carry a payload, which can be unpacked with
Speaker Notes
This slide should take about 15 minutes.
-
Rust thread APIs look not too different from e.g. C++ ones.
-
Run the example.
- 5ms timing is loose enough that main and spawned threads stay mostly in lockstep.
- Notice that the program ends before the spawned thread reaches 10!
- This is because main ends the program and spawned threads do not make it persist.
- Compare to pthreads/C++ std::thread/boost::thread if desired.
-
How do we wait around for the spawned thread to complete?
-
thread::spawn
returns aJoinHandle
. Look at the docs.JoinHandle
has a.join()
method that blocks.
-
Use
let handle = thread::spawn(...)
and laterhandle.join()
to wait for the thread to finish and have the program count all the way to 10. -
Now what if we want to return a value?
-
Look at docs again:
thread::spawn
’s closure returnsT
JoinHandle
.join()
returnsthread::Result<T>
-
Use the
Result
return value fromhandle.join()
to get access to the returned value. -
Ok, what about the other case?
- Trigger a panic in the thread. Note that this doesn’t panic
main
. - Access the panic payload. This is a good time to talk about
Any
.
- Trigger a panic in the thread. Note that this doesn’t panic
-
Now we can return values from threads! What about taking inputs?
- Capture something by reference in the thread closure.
- An error message indicates we must move it.
- Move it in, see we can compute and then return a derived value.
-
If we want to borrow?
- Main kills child threads when it returns, but another function would just return and leave them running.
- That would be stack use-after-return, which violates memory safety!
- How do we avoid this? see next slide.
Scoped Threads
Normal threads cannot borrow from their environment:
However, you can use a scoped thread for this:
Speaker Notes
This slide should take about 13 minutes.
- The reason for that is that when the
thread::scope
function completes, all the threads are guaranteed to be joined, so they can return borrowed data. - Normal Rust borrowing rules apply: you can either borrow mutably by one thread, or immutably by any number of threads.
Channels
Phần này sẽ kéo dài khoảng 20 phút, bao gồm:
Slide | Thời lượng |
---|---|
Senders and Receivers | 10 minutes |
Unbounded Channels | 2 minutes |
Bounded Channels | 10 minutes |
Senders and Receivers
Rust channels have two parts: a Sender<T>
and a Receiver<T>
. The two parts are connected via the channel, but you only see the end-points.
Speaker Notes
This slide should take about 9 minutes.
mpsc
stands for Multi-Producer, Single-Consumer.Sender
andSyncSender
implementClone
(so you can make multiple producers) butReceiver
does not.send()
andrecv()
returnResult
. If they returnErr
, it means the counterpartSender
orReceiver
is dropped and the channel is closed.
Unbounded Channels
You get an unbounded and asynchronous channel with mpsc::channel()
:
Bounded Channels
With bounded (synchronous) channels, send
can block the current thread:
Speaker Notes
This slide should take about 8 minutes.
- Calling
send
will block the current thread until there is space in the channel for the new message. The thread can be blocked indefinitely if there is nobody who reads from the channel. - A call to
send
will abort with an error (that is why it returnsResult
) if the channel is closed. A channel is closed when the receiver is dropped. - A bounded channel with a size of zero is called a “rendezvous channel”. Every send will block the current thread until another thread calls
recv
.
Send
and Sync
Phần này sẽ kéo dài khoảng 15 phút, bao gồm:
Slide | Thời lượng |
---|---|
Marker Traits | 2 minutes |
Send | 2 minutes |
Sync | 2 minutes |
Examples | 10 minutes |
Marker Traits
How does Rust know to forbid shared access across threads? The answer is in two traits:
Send
: a typeT
isSend
if it is safe to move aT
across a thread boundary.Sync
: a typeT
isSync
if it is safe to move a&T
across a thread boundary.
Send
and Sync
are unsafe traits. The compiler will automatically derive them for your types as long as they only contain Send
and Sync
types. You can also implement them manually when you know it is valid.
Speaker Notes
This slide should take about 2 minutes.
- One can think of these traits as markers that the type has certain thread-safety properties.
- They can be used in the generic constraints as normal traits.
Send
A type
T
isSend
if it is safe to move aT
value to another thread.
The effect of moving ownership to another thread is that destructors will run in that thread. So the question is when you can allocate a value in one thread and deallocate it in another.
Speaker Notes
This slide should take about 2 minutes.
As an example, a connection to the SQLite library must only be accessed from a single thread.
Sync
A type
T
isSync
if it is safe to access aT
value from multiple threads at the same time.
More precisely, the definition is:
T
isSync
if and only if&T
isSend
Speaker Notes
This slide should take about 2 minutes.
This statement is essentially a shorthand way of saying that if a type is thread-safe for shared use, it is also thread-safe to pass references of it across threads.
This is because if a type is Sync it means that it can be shared across multiple threads without the risk of data races or other synchronization issues, so it is safe to move it to another thread. A reference to the type is also safe to move to another thread, because the data it references can be accessed from any thread safely.
Examples
Send + Sync
Most types you come across are Send + Sync
:
i8
,f32
,bool
,char
,&str
, …(T1, T2)
,[T; N]
,&[T]
,struct { x: T }
, …String
,Option<T>
,Vec<T>
,Box<T>
, …Arc<T>
: Explicitly thread-safe via atomic reference count.Mutex<T>
: Explicitly thread-safe via internal locking.mpsc::Sender<T>
: As of 1.72.0.AtomicBool
,AtomicU8
, …: Uses special atomic instructions.
The generic types are typically Send + Sync
when the type parameters are Send + Sync
.
Send + !Sync
These types can be moved to other threads, but they’re not thread-safe. Typically because of interior mutability:
mpsc::Receiver<T>
Cell<T>
RefCell<T>
!Send + Sync
These types are thread-safe, but they cannot be moved to another thread:
MutexGuard<T: Sync>
: Uses OS level primitives which must be deallocated on the thread which created them.
!Send + !Sync
These types are not thread-safe and cannot be moved to other threads:
Rc<T>
: eachRc<T>
has a reference to anRcBox<T>
, which contains a non-atomic reference count.*const T
,*mut T
: Rust assumes raw pointers may have special concurrency considerations.
Shared State
Phần này sẽ kéo dài khoảng 30 phút, bao gồm:
Slide | Thời lượng |
---|---|
Arc | 5 minutes |
Mutex | 15 minutes |
Example | 10 minutes |
Arc
Arc<T>
allows shared read-only access via Arc::clone
:
Speaker Notes
This slide should take about 5 minutes.
Arc
stands for “Atomic Reference Counted”, a thread safe version ofRc
that uses atomic operations.Arc<T>
implementsClone
whether or notT
does. It implementsSend
andSync
if and only ifT
implements them both.Arc::clone()
has the cost of atomic operations that get executed, but after that the use of theT
is free.- Beware of reference cycles,
Arc
does not use a garbage collector to detect them.std::sync::Weak
can help.
Mutex
Mutex<T>
ensures mutual exclusion and allows mutable access to T
behind a read-only interface (another form of interior mutability):
Notice how we have a impl<T: Send> Sync for Mutex<T>
blanket implementation.
Speaker Notes
This slide should take about 14 minutes.
Mutex
in Rust looks like a collection with just one element — the protected data.- It is not possible to forget to acquire the mutex before accessing the protected data.
- You can get an
&mut T
from an&Mutex<T>
by taking the lock. TheMutexGuard
ensures that the&mut T
doesn’t outlive the lock being held. Mutex<T>
implements bothSend
andSync
iff (if and only if)T
implementsSend
.- A read-write lock counterpart:
RwLock
. - Why does
lock()
return aResult
?- If the thread that held the
Mutex
panicked, theMutex
becomes “poisoned” to signal that the data it protected might be in an inconsistent state. Callinglock()
on a poisoned mutex fails with aPoisonError
. You can callinto_inner()
on the error to recover the data regardless.
- If the thread that held the
Example
Let us see Arc
and Mutex
in action:
Speaker Notes
This slide should take about 8 minutes.
Possible solution:
Notable parts:
v
is wrapped in bothArc
andMutex
, because their concerns are orthogonal.- Wrapping a
Mutex
in anArc
is a common pattern to share mutable state between threads.
- Wrapping a
v: Arc<_>
needs to be cloned asv2
before it can be moved into another thread. Notemove
was added to the lambda signature.- Blocks are introduced to narrow the scope of the
LockGuard
as much as possible.
Exercises
Phần này sẽ kéo dài khoảng 1 giờ và 10 phút, bao gồm:
Slide | Thời lượng |
---|---|
Dining Philosophers | 20 minutes |
Multi-threaded Link Checker | 20 minutes |
Solutions | 30 minutes |
Dining Philosophers
The dining philosophers problem is a classic problem in concurrency:
Five philosophers dine together at the same table. Each philosopher has their own place at the table. There is a fork between each plate. The dish served is a kind of spaghetti which has to be eaten with two forks. Each philosopher can only alternately think and eat. Moreover, a philosopher can only eat their spaghetti when they have both a left and right fork. Thus two forks will only be available when their two nearest neighbors are thinking, not eating. After an individual philosopher finishes eating, they will put down both forks.
You will need a local Cargo installation for this exercise. Copy the code below to a file called src/main.rs
, fill out the blanks, and test that cargo run
does not deadlock:
use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use std::time::Duration;
struct Fork;
struct Philosopher {
name: String,
// left_fork: ...
// right_fork: ...
// thoughts: ...
}
impl Philosopher {
fn think(&self) {
self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();
}
fn eat(&self) {
// Pick up forks...
println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));
}
}
static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];
fn main() {
// Create forks
// Create philosophers
// Make each of them think and eat 100 times
// Output their thoughts
}
You can use the following Cargo.toml
:
[package]
name = "dining-philosophers"
version = "0.1.0"
edition = "2021"
Multi-threaded Link Checker
Let us use our new knowledge to create a multi-threaded link checker. It should start at a webpage and check that links on the page are valid. It should recursively check other pages on the same domain and keep doing this until all pages have been validated.
For this, you will need an HTTP client such as reqwest
. You will also need a way to find links, we can use scraper
. Finally, we’ll need some way of handling errors, we will use thiserror
.
Create a new Cargo project and reqwest
it as a dependency with:
cargo new link-checker
cd link-checker
cargo add --features blocking,rustls-tls reqwest
cargo add scraper
cargo add thiserror
If
cargo add
fails witherror: no such subcommand
, then please edit theCargo.toml
file by hand. Add the dependencies listed below.
The cargo add
calls will update the Cargo.toml
file to look like this:
[package]
name = "link-checker"
version = "0.1.0"
edition = "2021"
publish = false
[dependencies]
reqwest = { version = "0.11.12", features = ["blocking", "rustls-tls"] }
scraper = "0.13.0"
thiserror = "1.0.37"
You can now download the start page. Try with a small site such as https://www.google.org/
.
Your src/main.rs
file should look something like this:
use reqwest::blocking::Client;
use reqwest::Url;
use scraper::{Html, Selector};
use thiserror::Error;
#[derive(Error, Debug)]
enum Error {
#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),
}
#[derive(Debug)]
struct CrawlCommand {
url: Url,
extract_links: bool,
}
fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {
return Err(Error::BadResponse(response.status().to_string()));
}
let mut link_urls = Vec::new();
if !command.extract_links {
return Ok(link_urls);
}
let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);
let selector = Selector::parse("a").unwrap();
let href_values = document
.select(&selector)
.filter_map(|element| element.value().attr("href"));
for href in href_values {
match base_url.join(href) {
Ok(link_url) => {
link_urls.push(link_url);
}
Err(err) => {
println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}
}
}
Ok(link_urls)
}
fn main() {
let client = Client::new();
let start_url = Url::parse("https://www.google.org").unwrap();
let crawl_command = CrawlCommand{ url: start_url, extract_links: true };
match visit_page(&client, &crawl_command) {
Ok(links) => println!("Links: {links:#?}"),
Err(err) => println!("Could not extract links: {err:#}"),
}
}
Run the code in src/main.rs
with
cargo run
Tasks
- Use threads to check the links in parallel: send the URLs to be checked to a channel and let a few threads check the URLs in parallel.
- Extend this to recursively extract links from all pages on the
www.google.org
domain. Put an upper limit of 100 pages or so so that you don’t end up being blocked by the site.
Solutions
Dining Philosophers
use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use std::time::Duration;
struct Fork;
struct Philosopher {
name: String,
left_fork: Arc<Mutex<Fork>>,
right_fork: Arc<Mutex<Fork>>,
thoughts: mpsc::SyncSender<String>,
}
impl Philosopher {
fn think(&self) {
self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();
}
fn eat(&self) {
println!("{} is trying to eat", &self.name);
let _left = self.left_fork.lock().unwrap();
let _right = self.right_fork.lock().unwrap();
println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));
}
}
static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];
fn main() {
let (tx, rx) = mpsc::sync_channel(10);
let forks = (0..PHILOSOPHERS.len())
.map(|_| Arc::new(Mutex::new(Fork)))
.collect::<Vec<_>>();
for i in 0..forks.len() {
let tx = tx.clone();
let mut left_fork = Arc::clone(&forks[i]);
let mut right_fork = Arc::clone(&forks[(i + 1) % forks.len()]);
// To avoid a deadlock, we have to break the symmetry
// somewhere. This will swap the forks without deinitializing
// either of them.
if i == forks.len() - 1 {
std::mem::swap(&mut left_fork, &mut right_fork);
}
let philosopher = Philosopher {
name: PHILOSOPHERS[i].to_string(),
thoughts: tx,
left_fork,
right_fork,
};
thread::spawn(move || {
for _ in 0..100 {
philosopher.eat();
philosopher.think();
}
});
}
drop(tx);
for thought in rx {
println!("{thought}");
}
}
Link Checker
use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use reqwest::blocking::Client;
use reqwest::Url;
use scraper::{Html, Selector};
use thiserror::Error;
#[derive(Error, Debug)]
enum Error {
#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),
}
#[derive(Debug)]
struct CrawlCommand {
url: Url,
extract_links: bool,
}
fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {
return Err(Error::BadResponse(response.status().to_string()));
}
let mut link_urls = Vec::new();
if !command.extract_links {
return Ok(link_urls);
}
let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);
let selector = Selector::parse("a").unwrap();
let href_values = document
.select(&selector)
.filter_map(|element| element.value().attr("href"));
for href in href_values {
match base_url.join(href) {
Ok(link_url) => {
link_urls.push(link_url);
}
Err(err) => {
println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}
}
}
Ok(link_urls)
}
struct CrawlState {
domain: String,
visited_pages: std::collections::HashSet<String>,
}
impl CrawlState {
fn new(start_url: &Url) -> CrawlState {
let mut visited_pages = std::collections::HashSet::new();
visited_pages.insert(start_url.as_str().to_string());
CrawlState { domain: start_url.domain().unwrap().to_string(), visited_pages }
}
/// Determine whether links within the given page should be extracted.
fn should_extract_links(&self, url: &Url) -> bool {
let Some(url_domain) = url.domain() else {
return false;
};
url_domain == self.domain
}
/// Mark the given page as visited, returning false if it had already
/// been visited.
fn mark_visited(&mut self, url: &Url) -> bool {
self.visited_pages.insert(url.as_str().to_string())
}
}
type CrawlResult = Result<Vec<Url>, (Url, Error)>;
fn spawn_crawler_threads(
command_receiver: mpsc::Receiver<CrawlCommand>,
result_sender: mpsc::Sender<CrawlResult>,
thread_count: u32,
) {
let command_receiver = Arc::new(Mutex::new(command_receiver));
for _ in 0..thread_count {
let result_sender = result_sender.clone();
let command_receiver = command_receiver.clone();
thread::spawn(move || {
let client = Client::new();
loop {
let command_result = {
let receiver_guard = command_receiver.lock().unwrap();
receiver_guard.recv()
};
let Ok(crawl_command) = command_result else {
// The sender got dropped. No more commands coming in.
break;
};
let crawl_result = match visit_page(&client, &crawl_command) {
Ok(link_urls) => Ok(link_urls),
Err(error) => Err((crawl_command.url, error)),
};
result_sender.send(crawl_result).unwrap();
}
});
}
}
fn control_crawl(
start_url: Url,
command_sender: mpsc::Sender<CrawlCommand>,
result_receiver: mpsc::Receiver<CrawlResult>,
) -> Vec<Url> {
let mut crawl_state = CrawlState::new(&start_url);
let start_command = CrawlCommand { url: start_url, extract_links: true };
command_sender.send(start_command).unwrap();
let mut pending_urls = 1;
let mut bad_urls = Vec::new();
while pending_urls > 0 {
let crawl_result = result_receiver.recv().unwrap();
pending_urls -= 1;
match crawl_result {
Ok(link_urls) => {
for url in link_urls {
if crawl_state.mark_visited(&url) {
let extract_links = crawl_state.should_extract_links(&url);
let crawl_command = CrawlCommand { url, extract_links };
command_sender.send(crawl_command).unwrap();
pending_urls += 1;
}
}
}
Err((url, error)) => {
bad_urls.push(url);
println!("Got crawling error: {:#}", error);
continue;
}
}
}
bad_urls
}
fn check_links(start_url: Url) -> Vec<Url> {
let (result_sender, result_receiver) = mpsc::channel::<CrawlResult>();
let (command_sender, command_receiver) = mpsc::channel::<CrawlCommand>();
spawn_crawler_threads(command_receiver, result_sender, 16);
control_crawl(start_url, command_sender, result_receiver)
}
fn main() {
let start_url = reqwest::Url::parse("https://www.google.org").unwrap();
let bad_urls = check_links(start_url);
println!("Bad URLs: {:#?}", bad_urls);
}
Lời Chào Mừng
“Async” is a concurrency model where multiple tasks are executed concurrently by executing each task until it would block, then switching to another task that is ready to make progress. The model allows running a larger number of tasks on a limited number of threads. This is because the per-task overhead is typically very low and operating systems provide primitives for efficiently identifying I/O that is able to proceed.
Rust’s asynchronous operation is based on “futures”, which represent work that may be completed in the future. Futures are “polled” until they signal that they are complete.
Futures are polled by an async runtime, and several different runtimes are available.
Comparisons
-
Python has a similar model in its
asyncio
. However, itsFuture
type is callback-based, and not polled. Async Python programs require a “loop”, similar to a runtime in Rust. -
JavaScript’s
Promise
is similar, but again callback-based. The language runtime implements the event loop, so many of the details of Promise resolution are hidden.
Mục lục
Buổi học nên kéo dài khoảng 3 tiếng và 20 phút, bao gồm thời gian 10 phút nghỉ trưa. Nội dung buổi học bao gồm:
Segment | Thời lượng |
---|---|
Async Basics | 30 minutes |
Channels and Control Flow | 20 minutes |
Pitfalls | 55 minutes |
Exercises | 1 hour and 10 minutes |
Async Basics
Phần này sẽ kéo dài khoảng 30 phút, bao gồm:
Slide | Thời lượng |
---|---|
async/await | 10 minutes |
Futures | 4 minutes |
Runtimes | 10 minutes |
Tasks | 10 minutes |
async
/await
At a high level, async Rust code looks very much like “normal” sequential code:
Speaker Notes
This slide should take about 6 minutes.
Các điểm chính:
-
Note that this is a simplified example to show the syntax. There is no long running operation or any real concurrency in it!
-
What is the return type of an async call?
- Use
let future: () = async_main(10);
inmain
to see the type.
- Use
-
The “async” keyword is syntactic sugar. The compiler replaces the return type with a future.
-
You cannot make
main
async, without additional instructions to the compiler on how to use the returned future. -
You need an executor to run async code.
block_on
blocks the current thread until the provided future has run to completion. -
.await
asynchronously waits for the completion of another operation. Unlikeblock_on
,.await
doesn’t block the current thread. -
.await
can only be used inside anasync
function (or block; these are introduced later).
Futures
Future
is a trait, implemented by objects that represent an operation that may not be complete yet. A future can be polled, and poll
returns a Poll
.
An async function returns an impl Future
. It’s also possible (but uncommon) to implement Future
for your own types. For example, the JoinHandle
returned from tokio::spawn
implements Future
to allow joining to it.
The .await
keyword, applied to a Future, causes the current async function to pause until that Future is ready, and then evaluates to its output.
Speaker Notes
This slide should take about 4 minutes.
-
The
Future
andPoll
types are implemented exactly as shown; click the links to show the implementations in the docs. -
We will not get to
Pin
andContext
, as we will focus on writing async code, rather than building new async primitives. Briefly:-
Context
allows a Future to schedule itself to be polled again when an event occurs. -
Pin
ensures that the Future isn’t moved in memory, so that pointers into that future remain valid. This is required to allow references to remain valid after an.await
.
-
Runtimes
A runtime provides support for performing operations asynchronously (a reactor) and is responsible for executing futures (an executor). Rust does not have a “built-in” runtime, but several options are available:
- Tokio: performant, with a well-developed ecosystem of functionality like Hyper for HTTP or Tonic for gRPC.
- async-std: aims to be a “std for async”, and includes a basic runtime in
async::task
. - smol: simple and lightweight
Several larger applications have their own runtimes. For example, Fuchsia already has one.
Speaker Notes
This slide and its sub-slides should take about 10 minutes.
-
Note that of the listed runtimes, only Tokio is supported in the Rust playground. The playground also does not permit any I/O, so most interesting async things can’t run in the playground.
-
Futures are “inert” in that they do not do anything (not even start an I/O operation) unless there is an executor polling them. This differs from JS Promises, for example, which will run to completion even if they are never used.
Tokio
Tokio provides:
- A multi-threaded runtime for executing asynchronous code.
- An asynchronous version of the standard library.
- A large ecosystem of libraries.
Speaker Notes
-
With the
tokio::main
macro we can now makemain
async. -
The
spawn
function creates a new, concurrent “task”. -
Note:
spawn
takes aFuture
, you don’t call.await
oncount_to
.
Further exploration:
-
Why does
count_to
not (usually) get to 10? This is an example of async cancellation.tokio::spawn
returns a handle which can be awaited to wait until it finishes. -
Try
count_to(10).await
instead of spawning. -
Try awaiting the task returned from
tokio::spawn
.
Tasks
Rust has a task system, which is a form of lightweight threading.
A task has a single top-level future which the executor polls to make progress. That future may have one or more nested futures that its poll
method polls, corresponding loosely to a call stack. Concurrency within a task is possible by polling multiple child futures, such as racing a timer and an I/O operation.
use tokio::io::{self, AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;
#[tokio::main]
async fn main() -> io::Result<()> {
let listener = TcpListener::bind("127.0.0.1:0").await?;
println!("listening on port {}", listener.local_addr()?.port());
loop {
let (mut socket, addr) = listener.accept().await?;
println!("connection from {addr:?}");
tokio::spawn(async move {
socket.write_all(b"Who are you?\n").await.expect("socket error");
let mut buf = vec![0; 1024];
let name_size = socket.read(&mut buf).await.expect("socket error");
let name = std::str::from_utf8(&buf[..name_size]).unwrap().trim();
let reply = format!("Thanks for dialing in, {name}!\n");
socket.write_all(reply.as_bytes()).await.expect("socket error");
});
}
}
Speaker Notes
This slide should take about 6 minutes.
Copy this example into your prepared src/main.rs
and run it from there.
Try connecting to it with a TCP connection tool like nc or telnet.
-
Ask students to visualize what the state of the example server would be with a few connected clients. What tasks exist? What are their Futures?
-
This is the first time we’ve seen an
async
block. This is similar to a closure, but does not take any arguments. Its return value is a Future, similar to anasync fn
. -
Refactor the async block into a function, and improve the error handling using
?
.
Channels and Control Flow
Phần này sẽ kéo dài khoảng 20 phút, bao gồm:
Slide | Thời lượng |
---|---|
Async Channels | 10 minutes |
Join | 4 minutes |
Select | 5 minutes |
Async Channels
Several crates have support for asynchronous channels. For instance tokio
:
Speaker Notes
This slide should take about 8 minutes.
-
Change the channel size to
3
and see how it affects the execution. -
Overall, the interface is similar to the
sync
channels as seen in the morning class. -
Try removing the
std::mem::drop
call. What happens? Why? -
The Flume crate has channels that implement both
sync
andasync
send
andrecv
. This can be convenient for complex applications with both IO and heavy CPU processing tasks. -
What makes working with
async
channels preferable is the ability to combine them with otherfuture
s to combine them and create complex control flow.
Join
A join operation waits until all of a set of futures are ready, and returns a collection of their results. This is similar to Promise.all
in JavaScript or asyncio.gather
in Python.
Speaker Notes
This slide should take about 4 minutes.
Copy this example into your prepared src/main.rs
and run it from there.
-
For multiple futures of disjoint types, you can use
std::future::join!
but you must know how many futures you will have at compile time. This is currently in thefutures
crate, soon to be stabilised instd::future
. -
The risk of
join
is that one of the futures may never resolve, this would cause your program to stall. -
You can also combine
join_all
withjoin!
for instance to join all requests to an http service as well as a database query. Try adding atokio::time::sleep
to the future, usingfutures::join!
. This is not a timeout (that requiresselect!
, explained in the next chapter), but demonstratesjoin!
.
Select
A select operation waits until any of a set of futures is ready, and responds to that future’s result. In JavaScript, this is similar to Promise.race
. In Python, it compares to asyncio.wait(task_set, return_when=asyncio.FIRST_COMPLETED)
.
Similar to a match statement, the body of select!
has a number of arms, each of the form pattern = future => statement
. When a future
is ready, its return value is destructured by the pattern
. The statement
is then run with the resulting variables. The statement
result becomes the result of the select!
macro.
Speaker Notes
This slide should take about 5 minutes.
-
In this example, we have a race between a cat and a dog.
first_animal_to_finish_race
listens to both channels and will pick whichever arrives first. Since the dog takes 50ms, it wins against the cat that take 500ms. -
You can use
oneshot
channels in this example as the channels are supposed to receive only onesend
. -
Try adding a deadline to the race, demonstrating selecting different sorts of futures.
-
Note that
select!
drops unmatched branches, which cancels their futures. It is easiest to use when every execution ofselect!
creates new futures.- An alternative is to pass
&mut future
instead of the future itself, but this can lead to issues, further discussed in the pinning slide.
- An alternative is to pass
Pitfalls
Async / await provides convenient and efficient abstraction for concurrent asynchronous programming. However, the async/await model in Rust also comes with its share of pitfalls and footguns. We illustrate some of them in this chapter.
Phần này sẽ kéo dài khoảng 55 phút, bao gồm:
Slide | Thời lượng |
---|---|
Blocking the Executor | 10 minutes |
Pin | 20 minutes |
Async Traits | 5 minutes |
Cancellation | 20 minutes |
Blocking the executor
Most async runtimes only allow IO tasks to run concurrently. This means that CPU blocking tasks will block the executor and prevent other tasks from being executed. An easy workaround is to use async equivalent methods where possible.
Speaker Notes
This slide should take about 10 minutes.
-
Run the code and see that the sleeps happen consecutively rather than concurrently.
-
The
"current_thread"
flavor puts all tasks on a single thread. This makes the effect more obvious, but the bug is still present in the multi-threaded flavor. -
Switch the
std::thread::sleep
totokio::time::sleep
and await its result. -
Another fix would be to
tokio::task::spawn_blocking
which spawns an actual thread and transforms its handle into a future without blocking the executor. -
You should not think of tasks as OS threads. They do not map 1 to 1 and most executors will allow many tasks to run on a single OS thread. This is particularly problematic when interacting with other libraries via FFI, where that library might depend on thread-local storage or map to specific OS threads (e.g., CUDA). Prefer
tokio::task::spawn_blocking
in such situations. -
Use sync mutexes with care. Holding a mutex over an
.await
may cause another task to block, and that task may be running on the same thread.
Pin
Async blocks and functions return types implementing the Future
trait. The type returned is the result of a compiler transformation which turns local variables into data stored inside the future.
Some of those variables can hold pointers to other local variables. Because of that, the future should never be moved to a different memory location, as it would invalidate those pointers.
To prevent moving the future type in memory, it can only be polled through a pinned pointer. Pin
is a wrapper around a reference that disallows all operations that would move the instance it points to into a different memory location.
Speaker Notes
This slide should take about 20 minutes.
-
You may recognize this as an example of the actor pattern. Actors typically call
select!
in a loop. -
This serves as a summation of a few of the previous lessons, so take your time with it.
-
Naively add a
_ = sleep(Duration::from_millis(100)) => { println!(..) }
to theselect!
. This will never execute. Why? -
Instead, add a
timeout_fut
containing that future outside of theloop
: -
This still doesn’t work. Follow the compiler errors, adding
&mut
to thetimeout_fut
in theselect!
to work around the move, then usingBox::pin
: -
This compiles, but once the timeout expires it is
Poll::Ready
on every iteration (a fused future would help with this). Update to resettimeout_fut
every time it expires.
-
-
Box allocates on the heap. In some cases,
std::pin::pin!
(only recently stabilized, with older code often usingtokio::pin!
) is also an option, but that is difficult to use for a future that is reassigned. -
Another alternative is to not use
pin
at all but spawn another task that will send to aoneshot
channel every 100ms. -
Data that contains pointers to itself is called self-referential. Normally, the Rust borrow checker would prevent self-referential data from being moved, as the references cannot outlive the data they point to. However, the code transformation for async blocks and functions is not verified by the borrow checker.
-
Pin
is a wrapper around a reference. An object cannot be moved from its place using a pinned pointer. However, it can still be moved through an unpinned pointer. -
The
poll
method of theFuture
trait usesPin<&mut Self>
instead of&mut Self
to refer to the instance. That’s why it can only be called on a pinned pointer.
Async Traits
Async methods in traits are were stabilized only recently, in the 1.75 release. This required support for using return-position impl Trait
(RPIT) in traits, as the desugaring for async fn
includes -> impl Future<Output = ...>
.
However, even with the native support today there are some pitfalls around async fn
and RPIT in traits:
-
Return-position impl Trait captures all in-scope lifetimes (so some patterns of borrowing cannot be expressed)
-
Traits whose methods use return-position
impl trait
orasync
are notdyn
compatible.
If we do need dyn
support, the crate async_trait provides a workaround through a macro, with some caveats:
Speaker Notes
This slide should take about 5 minutes.
-
async_trait
is easy to use, but note that it’s using heap allocations to achieve this. This heap allocation has performance overhead. -
The challenges in language support for
async trait
are deep Rust and probably not worth describing in-depth. Niko Matsakis did a good job of explaining them in this post if you are interested in digging deeper. -
Try creating a new sleeper struct that will sleep for a random amount of time and adding it to the Vec.
Cancellation
Dropping a future implies it can never be polled again. This is called cancellation and it can occur at any await
point. Care is needed to ensure the system works correctly even when futures are cancelled. For example, it shouldn’t deadlock or lose data.
Speaker Notes
This slide should take about 18 minutes.
-
The compiler doesn’t help with cancellation-safety. You need to read API documentation and consider what state your
async fn
holds. -
Unlike
panic
and?
, cancellation is part of normal control flow (vs error-handling). -
The example loses parts of the string.
-
Whenever the
tick()
branch finishes first,next()
and itsbuf
are dropped. -
LinesReader
can be made cancellation-safe by makingbuf
part of the struct:
-
-
Interval::tick
is cancellation-safe because it keeps track of whether a tick has been ‘delivered’. -
AsyncReadExt::read
is cancellation-safe because it either returns or doesn’t read data. -
AsyncBufReadExt::read_line
is similar to the example and isn’t cancellation-safe. See its documentation for details and alternatives.
Exercises
Phần này sẽ kéo dài khoảng 1 giờ và 10 phút, bao gồm:
Slide | Thời lượng |
---|---|
Dining Philosophers | 20 minutes |
Broadcast Chat Application | 30 minutes |
Solutions | 20 minutes |
Dining Philosophers — Async
See dining philosophers for a description of the problem.
As before, you will need a local Cargo installation for this exercise. Copy the code below to a file called src/main.rs
, fill out the blanks, and test that cargo run
does not deadlock:
use std::sync::Arc;
use tokio::sync::mpsc::{self, Sender};
use tokio::sync::Mutex;
use tokio::time;
struct Fork;
struct Philosopher {
name: String,
// left_fork: ...
// right_fork: ...
// thoughts: ...
}
impl Philosopher {
async fn think(&self) {
self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.await
.unwrap();
}
async fn eat(&self) {
// Keep trying until we have both forks
println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;
}
}
static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];
#[tokio::main]
async fn main() {
// Create forks
// Create philosophers
// Make them think and eat
// Output their thoughts
}
Since this time you are using Async Rust, you’ll need a tokio
dependency. You can use the following Cargo.toml
:
[package]
name = "dining-philosophers-async-dine"
version = "0.1.0"
edition = "2021"
[dependencies]
tokio = { version = "1.26.0", features = ["sync", "time", "macros", "rt-multi-thread"] }
Also note that this time you have to use the Mutex
and the mpsc
module from the tokio
crate.
Speaker Notes
This slide should take about 20 minutes.
- Can you make your implementation single-threaded?
Broadcast Chat Application
In this exercise, we want to use our new knowledge to implement a broadcast chat application. We have a chat server that the clients connect to and publish their messages. The client reads user messages from the standard input, and sends them to the server. The chat server broadcasts each message that it receives to all the clients.
For this, we use a broadcast channel on the server, and tokio_websockets
for the communication between the client and the server.
Create a new Cargo project and add the following dependencies:
Cargo.toml:
[package]
name = "chat-async"
version = "0.1.0"
edition = "2021"
[dependencies]
futures-util = { version = "0.3.30", features = ["sink"] }
http = "1.1.0"
tokio = { version = "1.37.0", features = ["full"] }
tokio-websockets = { version = "0.8.2", features = ["client", "fastrand", "server", "sha1_smol"] }
The required APIs
You are going to need the following functions from tokio
and tokio_websockets
. Spend a few minutes to familiarize yourself with the API.
- StreamExt::next() implemented by
WebSocketStream
: for asynchronously reading messages from a Websocket Stream. - SinkExt::send() implemented by
WebSocketStream
: for asynchronously sending messages on a Websocket Stream. - Lines::next_line(): for asynchronously reading user messages from the standard input.
- Sender::subscribe(): for subscribing to a broadcast channel.
Two binaries
Normally in a Cargo project, you can have only one binary, and one src/main.rs
file. In this project, we need two binaries. One for the client, and one for the server. You could potentially make them two separate Cargo projects, but we are going to put them in a single Cargo project with two binaries. For this to work, the client and the server code should go under src/bin
(see the documentation).
Copy the following server and client code into src/bin/server.rs
and src/bin/client.rs
, respectively. Your task is to complete these files as described below.
src/bin/server.rs:
use futures_util::sink::SinkExt;
use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{channel, Sender};
use tokio_websockets::{Message, ServerBuilder, WebSocketStream};
async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebSocketStream<TcpStream>,
bcast_tx: Sender<String>,
) -> Result<(), Box<dyn Error + Send + Sync>> {
// TODO: For a hint, see the description of the task below.
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {
let (bcast_tx, _) = channel(16);
let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");
loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {
// Wrap the raw TCP stream into a websocket.
let ws_stream = ServerBuilder::new().accept(socket).await?;
handle_connection(addr, ws_stream, bcast_tx).await
});
}
}
src/bin/client.rs:
use futures_util::stream::StreamExt;
use futures_util::SinkExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio_websockets::{ClientBuilder, Message};
#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {
let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))
.connect()
.await?;
let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();
// TODO: For a hint, see the description of the task below.
}
Running the binaries
Run the server with:
cargo run --bin server
and the client with:
cargo run --bin client
Tasks
- Implement the
handle_connection
function insrc/bin/server.rs
.- Hint: Use
tokio::select!
for concurrently performing two tasks in a continuous loop. One task receives messages from the client and broadcasts them. The other sends messages received by the server to the client.
- Hint: Use
- Complete the main function in
src/bin/client.rs
.- Hint: As before, use
tokio::select!
in a continuous loop for concurrently performing two tasks: (1) reading user messages from standard input and sending them to the server, and (2) receiving messages from the server, and displaying them for the user.
- Hint: As before, use
- Optional: Once you are done, change the code to broadcast messages to all clients, but the sender of the message.
Solutions
Dining Philosophers — Async
use std::sync::Arc;
use tokio::sync::mpsc::{self, Sender};
use tokio::sync::Mutex;
use tokio::time;
struct Fork;
struct Philosopher {
name: String,
left_fork: Arc<Mutex<Fork>>,
right_fork: Arc<Mutex<Fork>>,
thoughts: Sender<String>,
}
impl Philosopher {
async fn think(&self) {
self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.await
.unwrap();
}
async fn eat(&self) {
// Keep trying until we have both forks
let (_left_fork, _right_fork) = loop {
// Pick up forks...
let left_fork = self.left_fork.try_lock();
let right_fork = self.right_fork.try_lock();
let Ok(left_fork) = left_fork else {
// If we didn't get the left fork, drop the right fork if we
// have it and let other tasks make progress.
drop(right_fork);
time::sleep(time::Duration::from_millis(1)).await;
continue;
};
let Ok(right_fork) = right_fork else {
// If we didn't get the right fork, drop the left fork and let
// other tasks make progress.
drop(left_fork);
time::sleep(time::Duration::from_millis(1)).await;
continue;
};
break (left_fork, right_fork);
};
println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;
// The locks are dropped here
}
}
static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];
#[tokio::main]
async fn main() {
// Create forks
let mut forks = vec![];
(0..PHILOSOPHERS.len()).for_each(|_| forks.push(Arc::new(Mutex::new(Fork))));
// Create philosophers
let (philosophers, mut rx) = {
let mut philosophers = vec![];
let (tx, rx) = mpsc::channel(10);
for (i, name) in PHILOSOPHERS.iter().enumerate() {
let left_fork = Arc::clone(&forks[i]);
let right_fork = Arc::clone(&forks[(i + 1) % PHILOSOPHERS.len()]);
philosophers.push(Philosopher {
name: name.to_string(),
left_fork,
right_fork,
thoughts: tx.clone(),
});
}
(philosophers, rx)
// tx is dropped here, so we don't need to explicitly drop it later
};
// Make them think and eat
for phil in philosophers {
tokio::spawn(async move {
for _ in 0..100 {
phil.think().await;
phil.eat().await;
}
});
}
// Output their thoughts
while let Some(thought) = rx.recv().await {
println!("Here is a thought: {thought}");
}
}
Broadcast Chat Application
src/bin/server.rs:
use futures_util::sink::SinkExt;
use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{channel, Sender};
use tokio_websockets::{Message, ServerBuilder, WebSocketStream};
async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebSocketStream<TcpStream>,
bcast_tx: Sender<String>,
) -> Result<(), Box<dyn Error + Send + Sync>> {
ws_stream
.send(Message::text("Welcome to chat! Type a message".to_string()))
.await?;
let mut bcast_rx = bcast_tx.subscribe();
// A continuous loop for concurrently performing two tasks: (1) receiving
// messages from `ws_stream` and broadcasting them, and (2) receiving
// messages on `bcast_rx` and sending them to the client.
loop {
tokio::select! {
incoming = ws_stream.next() => {
match incoming {
Some(Ok(msg)) => {
if let Some(text) = msg.as_text() {
println!("From client {addr:?} {text:?}");
bcast_tx.send(text.into())?;
}
}
Some(Err(err)) => return Err(err.into()),
None => return Ok(()),
}
}
msg = bcast_rx.recv() => {
ws_stream.send(Message::text(msg?)).await?;
}
}
}
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {
let (bcast_tx, _) = channel(16);
let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");
loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {
// Wrap the raw TCP stream into a websocket.
let ws_stream = ServerBuilder::new().accept(socket).await?;
handle_connection(addr, ws_stream, bcast_tx).await
});
}
}
src/bin/client.rs:
use futures_util::stream::StreamExt;
use futures_util::SinkExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio_websockets::{ClientBuilder, Message};
#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {
let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))
.connect()
.await?;
let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();
// Continuous loop for concurrently sending and receiving messages.
loop {
tokio::select! {
incoming = ws_stream.next() => {
match incoming {
Some(Ok(msg)) => {
if let Some(text) = msg.as_text() {
println!("From server: {}", text);
}
},
Some(Err(err)) => return Err(err.into()),
None => return Ok(()),
}
}
res = stdin.next_line() => {
match res {
Ok(None) => return Ok(()),
Ok(Some(line)) => ws_stream.send(Message::text(line.to_string())).await?,
Err(err) => return Err(err.into()),
}
}
}
}
}
Thanks!
Thank you for taking Comprehensive Rust 🦀! We hope you enjoyed it and that it was useful.
We’ve had a lot of fun putting the course together. The course is not perfect, so if you spotted any mistakes or have ideas for improvements, please get in contact with us on GitHub. We would love to hear from you.
Chú giải thuật ngữ
Bảng từ vựng dưới đây cung cấp định nghĩa ngắn gọn của nhiều thuật ngữ Rust.
- allocate:
Cấp phát bộ nhớ động trên bộ nhớ heap. - argument:
Giá trị được truyền vào một hàm. Có thể được gọi là tham số. - Bare-metal Rust:
Việc phát triển chương trình Rust ở cấp thấp, thường để triển khai trên hệ thống không cần hệ điều hành. Xem Bare-metal Rust. - block:
Xem Blocks và scope. - borrow:
Xem Borrowing. - borrow checker:
Một bộ phận của Rust compiler kiểm tra xem tất cả các borrow có hợp lệ hay không. - brace:
{
và}
. Được gọi là dấu ngoặc nhọn, phân chia các block. - build:
Quá trình chuyển đổi mã nguồn thành một chương trình executable. - call:
Gọi hoặc thực thi hàm. - channel:
Dùng để truyền thông điệp một cách an toàn giữa các thread. - Comprehensive Rust 🦀:
Các khóa học ở đây được gọi chung là Comprehensive Rust 🦀. - concurrency:
Quá trình thực thi nhiều tác vụ hoặc process cùng một lúc. - Concurrency in Rust:
Xem Concurrency trong Rust. - constant:
Một giá trị không thay đổi trong quá trình thực thi của chương trình. Còn được gọi là hằng số. - control flow:
Thứ tự thực thi của các câu lệnh trong một chương trình. Một vài sách gọi từ này là luồng điều khiển. - crash:
Khi chương trình gặp lỗi không xử lý được và bị dừng đột ngột. - enumeration:
Môt kiểu dữ liệu chứa một hoặc nhiều hằng số, có thể kèm theo một tuple hoặc một struct. - error:
Khi gặp phải một hành vi hoặc kết quả không như dự kiến. - error handling:
Quá trình quản lý và xử lý lỗi xảy ra trong quá trình thực thi chương trình. - exercise:
Bài tập được thiết kế giúp học viên luyện tập và kiểm tra năng lực lập trình. - function:
Một đoạn code có thể được tái sử dụng, nhằm thực hiện một nhiệm vụ cụ thể.Còn được gọi là hàm. - garbage collector:
Một cơ chế tự động giải phóng bộ nhớ bị chiếm bởi các biến không còn được sử dụng nữa. - generics:
Một tính năng của ngôn ngữ lập trình, cho phép code được viết nhưng không cần phải định rõ kiểu dữ liệu, giúp tái sử dụng code với nhiều kiểu dữ liệu khác nhau. - immutable:
Không thể thay đổi sau khi tạo. Có thể được dịch là bất biến. - integration test:
Một quy trình test code để kiểm tra sự tương tác giữa các thành phần của hệ thống. - keyword:
Một từ khóa trong ngôn ngữ lập trình, có ý nghĩa cụ thể và không thể sử dụng như một identifier (tên biến). - library:
Một bộ sưu tập các hàm hoặc code đã được biên dịch trước, có thể được sử dụng trong chương trình. Thường được gọi là thư viện. - macro:
Macros trong Rust có thể được nhận diện bằng việc tên có dấu!
. Macros được sử dụng khi hàm thông thường không đáp ứng được nhu cầu của chương trình. Một ví dụ điển hình làformat!
, macro này có thể nhận một số lượng tham số không cố định (có thể 1 tham số, 2 tham số, hay thậm chí là không có tham số nào). Hàm thông thường trong Rust không làm được điều này. main
function:
Điểm bắt đầu của mọi chương trình Rust là hàmmain
.- match:
Một control flow trong Rust cho phép so sánh một giá trị với một số pattern cho trước. - memory leak:
Khi chương trình không giải phóng bộ nhớ của biến không còn cần thiết, dẫn đến việc bộ nhớ sử dụng tăng dần trong quá trình thực thi. - method:
Một hàm liên kết với một đối tượng hoặc một kiểu dữ liệu trong Rust. - module:
Một phương pháp đẻ nhóm các định nghĩa, như hàm, kiểu dữ liệu, hoặc traits, trong Rust. - move:
Chuyển quyền sở hữu của một giá trị từ một biến sang một biến khác trong Rust. - mutable:
Một thuộc tính trong Rust cho phép biến có thể được thay đổi sau khi đã được khai báo. - ownership:
Một khái niệm trong Rust xác định phần nào của code chịu trách nhiệm quản lý bộ nhớ liên quan đến một giá trị. - panic:
Khi chương trình gặp phải một lỗi không thể phục hồi được, dẫn đến việc dừng chương trình. - parameter:
Giá trị được truyền vào một hàm khi hàm đó được gọi. Còn được gọi là tham số. - pattern:
Cách sử dụng giá trị, hằng số, hoặc cấu trúc để so sánh với một biểu thức trong Rust. - payload:
Dữ liệu hoặc thông tin được chuyển đi, thường sử dụng khi nhắc đến việc chuyển dữ liệu qua mạng. - program:
Một tập hợp các dòng lệnh máy tính có thể thực thi để thực hiện một nhiệm vụ hoặc giải quyết một vấn đề cụ thể. Còn được gọi là chương trình. - programming language:
Một hệ thống ngôn ngữ được sử dụng để truyền thông điệp cho máy tính, như Rust. - receiver:
Tham số đầu tiên trong một method của Rust, đại diện cho biến mà method đó gọi lên. - reference counting:
Một kỹ thuật quản lý bộ nhớ trong đó số lượng tham chiếu đến một đối tượng được theo dõi, và đối tượng được giải phóng khi số lượng tham chiếu giảm về 0. - return:
Một từ khóa trong Rust dùng để chỉ ra giá trị trả về của một hàm. - Rust:
Ngôn ngữ lập trình hệ thống chú trọng vào an toàn và hiệu suất. - Rust Fundamentals:
Ngày 1 đến ngày 4 của khóa học này. - Rust in Android:
Xem Sử dụng Rust trong Android. - Rust in Chromium:
Xem Sử dụng Rust trong Chromium. - safe:
Đoạn code tuân thủ các quy tắc về ownership và borrowing của Rust, ngăn chặn lỗi liên quan đến bộ nhớ. - scope:
Một phạm vi trong chương trình mà một biến có thể được sử dụng. - standard library:
Một bộ sưu tập các module cung cấp các chức năng cần thiết trong Rust. Một số sách gọi là thư viện chuẩn. - static:
Một từ khóa trong Rust dùng để định nghĩa biến tĩnh hoặc các phần tử với lifetime là'static
. - string:
Một kiểu dữ liệu lưu trữ dữ liệu văn bản. XemString
vsstr
để biết thêm chi tiết. Còn được gọi là chuỗi. - struct:
Một kiểu dữ liệu trong Rust, dùng để nhóm các biến khác nhau với nhau thành một kiểu dữ liệu mới. - test:
Một module trong Rust chứa các hàm kiểm tra sự chính xác của các hàm khác. - thread:
Một cơ chế cho phép thực thi nhiều tác vụ cùng một lúc trong chương trình. Còn được gọi là luồng. - thread safety:
Thuộc tính của chương trình đảm bảo chương trình hoạt động chuẩn xác trong môi trường đa luồng. - trait:
Một tập hợp các hành vi mà ta muốn một kiểu dữ liệu cụ thể phải có. - trait bound:
Một cách để yêu cầu một kiểu dữ liệu phải implement một số trait cụ thể. - tuple:
Một kiểu dữ liệu trong Rust chứa các biến khác nhau. Các trường của tuple không có tên, và được truy cập bằng số thứ tự. - type:
Một cơ chế giúp xác định các thao tác có thể thực hiện trên giá trị của một kiểu dữ liệu cụ thể trong Rust. - type inference:
Một chức năng của Rust compiler giúp suy luận kiểu dữ liệu của biến hoặc biểu thức, thay vì phải khai báo kiểu dữ liệu cho từng biến. - undefined behavior:
Một số hành vi và điều kiện trong Rust không có kết quả cụ thể, thường dẫn đến việc chương trình hoạt động bất thường. - union:
Một kiểu dữ liệu có thể chứa giá trị của nhiều kiểu dữ liệu khác nhau, nhưng chỉ một giá trị một lúc. - unit test:
Một loại test trong Rust, giúp kiểm tra từng phần nhỏ của chương trình. Xem Unit Tests. - unit type:
Kiểu dữ liệu không chứa dữ liệu, ký hiệu bằng()
. - unsafe:
Một phần của Rust cho phép người lập trình gây ra undefined behavior. Xem Unsafe Rust. - variable:
Một vùng bộ nhớ lưu trữ dữ liệu. Có thể được sử dụng trong một scope. Còn được gọi là biến.
Other Rust Resources
The Rust community has created a wealth of high-quality and free resources online.
Official Documentation
The Rust project hosts many resources. These cover Rust in general:
- The Rust Programming Language: the canonical free book about Rust. Covers the language in detail and includes a few projects for people to build.
- Rust By Example: covers the Rust syntax via a series of examples which showcase different constructs. Sometimes includes small exercises where you are asked to expand on the code in the examples.
- Rust Standard Library: full documentation of the standard library for Rust.
- The Rust Reference: an incomplete book which describes the Rust grammar and memory model.
More specialized guides hosted on the official Rust site:
- The Rustonomicon: covers unsafe Rust, including working with raw pointers and interfacing with other languages (FFI).
- Asynchronous Programming in Rust: covers the new asynchronous programming model which was introduced after the Rust Book was written.
- The Embedded Rust Book: an introduction to using Rust on embedded devices without an operating system.
Unofficial Learning Material
A small selection of other guides and tutorial for Rust:
- Learn Rust the Dangerous Way: covers Rust from the perspective of low-level C programmers.
- Rust for Embedded C Programmers: covers Rust from the perspective of developers who write firmware in C.
- Rust for professionals: covers the syntax of Rust using side-by-side comparisons with other languages such as C, C++, Java, JavaScript, and Python.
- Rust on Exercism: 100+ exercises to help you learn Rust.
- Ferrous Teaching Material: a series of small presentations covering both basic and advanced part of the Rust language. Other topics such as WebAssembly, and async/await are also covered.
- Advanced testing for Rust applications: a self-paced workshop that goes beyond Rust’s built-in testing framework. It covers
googletest
, snapshot testing, mocking as well as how to write your own custom test harness. - Beginner’s Series to Rust and Take your first steps with Rust: two Rust guides aimed at new developers. The first is a set of 35 videos and the second is a set of 11 modules which covers Rust syntax and basic constructs.
- Learn Rust With Entirely Too Many Linked Lists: in-depth exploration of Rust’s memory management rules, through implementing a few different types of list structures.
Please see the Little Book of Rust Books for even more Rust books.
Credits
The material here builds on top of the many great sources of Rust documentation. See the page on other resources for a full list of useful resources.
The material of Comprehensive Rust is licensed under the terms of the Apache 2.0 license, please see LICENSE
for details.
Rust by Example
Some examples and exercises have been copied and adapted from Rust by Example. Please see the third_party/rust-by-example/
directory for details, including the license terms.
Rust on Exercism
Some exercises have been copied and adapted from Rust on Exercism. Please see the third_party/rust-on-exercism/
directory for details, including the license terms.
CXX
The Interoperability with C++ section uses an image from CXX. Please see the third_party/cxx/
directory for details, including the license terms.