練習:Protobuf 剖析

在本練習中,您將建構 protobuf 二進位編碼的剖析器。請放心,這比看起來容易!這個練習也會舉例說明常見的剖析模式,也就是傳遞資料切片。基礎資料本身一律不會複製。

如要完整剖析 protobuf 訊息,您必須瞭解欄位型別,這會依欄位編號建立索引,通常位於 proto 檔案內。在本練習中,我們會在針對各欄位呼叫的函式中,將該資訊編碼為 match 陳述式。

我們將使用以下 proto:

message PhoneNumber {
  optional string number = 1;
  optional string type = 2;
}

message Person {
  optional string name = 1;
  optional int32 id = 2;
  repeated PhoneNumber phones = 3;
}

proto 訊息會編碼為一系列的欄位,一個接著一個。每個欄位都以後方加上值的「標記」形式實作。此標記含有欄位編號 (例如 Person 訊息的 id 欄位編號是 2) 以及有線型別,後者負責定義應如何從位元組資料流中決定酬載。

整數 (包含標記) 會以稱為 VARINT 的可變長度編碼表示。好消息是,以下程式碼已為您定義 parse_varint。該程式碼也定義了回呼,藉此處理 PersonPhoneNumber 欄位,並將訊息剖析為對這些回呼的一系列呼叫。

您剩下的就只是為 PersonPhoneNumber 實作 parse_field 函式和 ProtoMessage 特徵即可。

use std::convert::TryFrom;
use thiserror::Error;

#[derive(Debug, Error)]
enum Error {
    #[error("Invalid varint")]
    InvalidVarint,
    #[error("Invalid wire-type")]
    InvalidWireType,
    #[error("Unexpected EOF")]
    UnexpectedEOF,
    #[error("Invalid length")]
    InvalidSize(#[from] std::num::TryFromIntError),
    #[error("Unexpected wire-type)")]
    UnexpectedWireType,
    #[error("Invalid string (not UTF-8)")]
    InvalidString,
}

/// A wire type as seen on the wire.
enum WireType {
    /// The Varint WireType indicates the value is a single VARINT.
    Varint,
    //I64,  -- not needed for this exercise
    /// The Len WireType indicates that the value is a length represented as a
    /// VARINT followed by exactly that number of bytes.
    Len,
    /// The I32 WireType indicates that the value is precisely 4 bytes in
    /// little-endian order containing a 32-bit signed integer.
    I32,
}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {
    Varint(u64),
    //I64(i64),  -- not needed for this exercise
    Len(&'a [u8]),
    I32(i32),
}

#[derive(Debug)]
/// A field, containing the field number and its value.
struct Field<'a> {
    field_num: u64,
    value: FieldValue<'a>,
}

trait ProtoMessage<'a>: Default + 'a {
    fn add_field(&mut self, field: Field<'a>) -> Result<(), Error>;
}

impl TryFrom<u64> for WireType {
    type Error = Error;

    fn try_from(value: u64) -> Result<WireType, Error> {
        Ok(match value {
            0 => WireType::Varint,
            //1 => WireType::I64,  -- not needed for this exercise
            2 => WireType::Len,
            5 => WireType::I32,
            _ => return Err(Error::InvalidWireType),
        })
    }
}

impl<'a> FieldValue<'a> {
    fn as_string(&self) -> Result<&'a str, Error> {
        let FieldValue::Len(data) = self else {
            return Err(Error::UnexpectedWireType);
        };
        std::str::from_utf8(data).map_err(|_| Error::InvalidString)
    }

    fn as_bytes(&self) -> Result<&'a [u8], Error> {
        let FieldValue::Len(data) = self else {
            return Err(Error::UnexpectedWireType);
        };
        Ok(data)
    }

    fn as_u64(&self) -> Result<u64, Error> {
        let FieldValue::Varint(value) = self else {
            return Err(Error::UnexpectedWireType);
        };
        Ok(*value)
    }
}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> Result<(u64, &[u8]), Error> {
    for i in 0..7 {
        let Some(b) = data.get(i) else {
            return Err(Error::InvalidVarint);
        };
        if b & 0x80 == 0 {
            // This is the last byte of the VARINT, so convert it to
            // a u64 and return it.
            let mut value = 0u64;
            for b in data[..=i].iter().rev() {
                value = (value << 7) | (b & 0x7f) as u64;
            }
            return Ok((value, &data[i + 1..]));
        }
    }

    // More than 7 bytes is invalid.
    Err(Error::InvalidVarint)
}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> Result<(u64, WireType), Error> {
    let field_num = tag >> 3;
    let wire_type = WireType::try_from(tag & 0x7)?;
    Ok((field_num, wire_type))
}


/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> Result<(Field, &[u8]), Error> {
    let (tag, remainder) = parse_varint(data)?;
    let (field_num, wire_type) = unpack_tag(tag)?;
    let (fieldvalue, remainder) = match wire_type {
        _ => todo!("Based on the wire type, build a Field, consuming as many bytes as necessary.")
    };
    todo!("Return the field, and any un-consumed bytes.")
}

/// Parse a message in the given data, calling `T::add_field` for each field in
/// the message.
///
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> Result<T, Error> {
    let mut result = T::default();
    while !data.is_empty() {
        let parsed = parse_field(data)?;
        result.add_field(parsed.0)?;
        data = parsed.1;
    }
    Ok(result)
}

#[derive(Debug, Default)]
struct PhoneNumber<'a> {
    number: &'a str,
    type_: &'a str,
}

#[derive(Debug, Default)]
struct Person<'a> {
    name: &'a str,
    id: u64,
    phone: Vec<PhoneNumber<'a>>,
}

// TODO: Implement ProtoMessage for Person and PhoneNumber.

fn main() {
    let person: Person = parse_message(&[
        0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a,
        0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35,
        0x2d, 0x31, 0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a,
        0x18, 0x0a, 0x0e, 0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37,
        0x2d, 0x35, 0x33, 0x30, 0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c,
        0x65,
    ])
    .unwrap();
    println!("{:#?}", person);
}